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1. Introduction 

This program, BayeScan aims at identifying candidate loci under natural selection from genetic data, 

using differences in allele frequencies between populations. BayeScan is based on the multinomial-

Dirichlet model. One of the scenarios covered consists of an island model in which subpopulation 

allele frequencies are correlated through a common migrant gene pool from which they differ in 

varying degrees. The difference in allele frequency between this common gene pool and each 

subpopulation is measured by a subpopulation specific FST coefficient. Therefore, this formulation 

can consider realistic ecological scenarios where the effective size and the immigration rate may 

differ among subpopulations. 

Being Bayesian, BayeScan incorporates the uncertainty on allele frequencies due to small sample 

sizes. In practice, very small sample size can be use, with the risk of a low power, but with no 

particular risk of bias. Allele frequencies are estimated using different models depending on the type 

of genetic marker used. In BayeScan, three different types of data can be used: (i) codominant data 

(as SNPs or microsatellites), (ii) dominant binary data (as AFLPs) and (iii) AFLP band intensity, which 

are neither considered as dominant nor codominant.  

Selection is introduced by decomposing locus–population FST coefficients into a population-specific 

component (beta), shared by all loci and a locus-specific component (alpha) shared by all the 

populations using a logistic regression. Departure from neutrality at a given locus is assumed when 

the locus-specific component is necessary to explain the observed pattern of diversity (alpha 

significantly different from 0). A positive value of alpha suggests diversifying selection, whereas 

negative values suggest balancing or purifying selection. This leads to two alternative models for 

each locus, including or not the alpha component to model selection. BayeScan implements a 

reversible-jump MCMC algorithm to estimate the posterior probability of each one of these models. 

For each locus, BayeScan calculates a posterior probability for the model including selection. These 

probabilities are very convenient to make decision in the context multiple testing (testing a large 

number of markers simultaneously). Please note that a posterior probability can NOT be compared 

directly to a p-value like the one obtained using the FDist software by Mark Beaumont. In Bayesian 

statistics, model choice decision can be performed using the so-called “Bayes factors”. Given a 

problem in which we have to choose between two models M1 and M2 (say neutral and selection), 

on the basis of a data set N, the Bayes factor BF for model M2 is given by BF=P(N|M2)/P(N|M1). The 

Bayes factor provides a scale of evidence in favor of one model versus another. For example, BF=2 

indicates that the data favors model M2 over model M1 at odds of two to one. The next table gives 

Jeffreys' scale of evidence for Bayes factors: 

 

 



P(α≠0) Bayes Factor (BF) log10(BF) Jeffreys' interpretation 

0.50 → 0.76 1 → 3 0 → 0.5 Barely worth mentioning 

0.76 → 0.91 3 → 10 0.5 → 1 Substantial 

0.91 → 0.97 10 → 32 1 → 1.5 Strong 

0.97 → 0.99 32 → 100 1.5 → 2 Very strong 

0.99 → 1.00 100 → ∞ 2 → ∞ Decisive 

 

As a result, a Bayes factor of 3 corresponding to a posterior probability of 0.76, is already considered 

as being a “substantial” evidence for selection (although p-value of 1-0.76=0.24 is generally 

considered as a very weak signal in classical statistics).  

In the context of multiple testing, we also need to incorporate our skepticism about the chance that 

each locus is under selection. This is done in BayeScan by setting the prior odds for the neutral 

model P(M1)/P(M2) and by using Posterior Odds (PO) instead of Bayes factors to make decisions: 

PO=P(M2|N)/P(M1|N)=BF*P(M2)/P(M1). Posterior odds are simply the ratio of posterior 

probabilities, and indicate how more likely the model with selection is compared to the neutral 

model (Jeffrey’s scale of evidence can also be used with posterior odds). A big advantage of 

posterior probabilities is that they directly allow the control of the False Discovery Rate (FDR). FDR is 

defined as the expected proportion of false positives among outlier markers. Controlling for FDR has 

a much greater power than controlling for familywise error rate using Bonferroni correction for 

example. In practice, a given posterior odds threshold (chosen according to Jeffrey’s scale of 

evidence for example), defines a set of outlier markers, and one can very easily calculate the 

corresponding FDR. However, it is even more interesting to reverse the process by first choosing a 

target FDR, and then looking for the highest posterior odds threshold achieving this FDR. In this 

context, we can define a q-value, which is the FDR analogue of the p-value (note that a q-value is 

only defined in the context of multiple testing, whereas a p-value is defined on a single test). The q-

value of given locus is the minimum FDR at which this locus may become significant. Since version 

2.1, BayeScan directly calculates q-values for each locus and we encourage users to use (and report) 

this measure to make decisions. Remember that in practice, if you choose, for example, a q-value 

threshold of 10%, it means that 10% of the corresponding outlier markers (those having a q-value 

lower than 10%) are expected to be false positives. Note that a 10% threshold for q-values is much 

more stringent than a 10% threshold for p-values in classical statistics. 

BayeScan and its improvements have been described successively in: 

 Foll, M and OE Gaggiotti (2008) A genome scan method to identify selected loci appropriate 

for both dominant and codominant markers: A Bayesian perspective. Genetics 180: 977-993 

 Foll M, Fischer MC, Heckel G and L Excoffier (2010) Estimating population structure from 

AFLP amplification intensity. Molecular Ecology 19: 4638-4647 

 Fischer MC, Foll M, Excoffier L and G Heckel (2011) Enhanced AFLP genome scans detect 

local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Molecular 

Ecology 20: 1450–1462 

 



2. BayeScan usage 

BayeScan is command line based open source software, published under the GNU General Public 

License as published by the Free Software Foundation (see http://www.gnu.org/licenses/). BayeScan 

is coded using standard C++ and can be easily compiled under any system having a C++ compiler 

available using the “Makefile” provided along with the source code (just typing “make” in a terminal 

in the source folder should create the executable file). We provide executable ready to be used 

under Windows, MacOS (intel), Linux 32bits and 64 bits. Since version 2.1, the command line version 

of BayeScan has been optimized to work on multicore processors. In practice this means that it will 

be much faster than previous versions as most machines now have at least 4 cores. By default 

BayeScan will detect the number of cores available on your machine and use them all (this number is 

written on the console at the beginning of the calculation). As this can make your computer difficult 

to use for other tasks at the same time, you can also force BayeScan to use the number n you want 

using the “-threads n” option. 

We also provide a Graphical User Interface (GUI) version based on the exact same code as the 

command line version, but only for Windows systems. This version does not support multicore 

computing and will be much slower than the command line version on a multicore machine 

(basically any recent machine). 

The only compulsory argument to set in BayeScan is the input file describing the multilocus genetic 

data (see input file preparation section for details about the file format). There is no limitation for 

the size of the data, but your computer’s memory. All the other options have default values and can 

to be set using the graphical user interface under Windows systems, or using command line 

arguments for the command line version. Just starting the command line version without any 

argument will display the full list of options: 

---------------------------  
| Input                   |  
--------------------------- 
alleles.txt  Name of the genotypes data input file  
-d discarded Optional input file containing list of loci to discard 
-snp         Use SNP genotypes matrix 
---------------------------  
| Output                  |  
--------------------------- 
-od .        Output file directory, default is the same as program file 
-o alleles   Output file prefix, default is input file without the extension 
-fstat       Only estimate F-stats (no selection) 
-all_trace   Write out MCMC trace also for alpha paremeters (can be a very large 
       file) 
---------------------------  
| Parameters of the chain |  
--------------------------- 
-threads n   Number of threads used, default is number of cpu available 
-n 5000      Number of outputted iterations, default is 5000  
-thin 10     Thinning interval size, default is 10  
-nbp 20      Number of pilot runs, default is 20  
-pilot 5000  Length of pilot runs, default is 5000  
-burn 50000  Burn-in length, default is 50000  
---------------------------  
| Parameters of the model |  
--------------------------- 
-pr_odds 10  Prior odds for the neutral model, default is 10  
-lb_fis 0    Lower bound for uniform prior on Fis (dominant data), default is 0 
-hb_fis 1    Higher bound for uniform prior on Fis (dominant data), default is 1 
-beta_fis    Optional beta prior for Fis (dominant data, m_fis and sd_fis need to be 
       set) 
-m_fis 0.05  Optional mean for beta prior on Fis (dominant data with -beta_fis) 

http://www.gnu.org/licenses/


-sd_fis 0.01 Optional std. deviation for beta prior on Fis (dominant data with  
       -beta_fis) 
-aflp_pc 0.1 Threshold for the recessive genotype as a fraction of maximum band 
       intensity, default is 0.1 
---------------------------  
| Output files            |  
--------------------------- 
-out_pilot   Optional output file for pilot runs 
-out_freq    Optional output file for allele frequencies  

One possibility concerning the input file is to also provide a list of loci to discard from the calculation. 

This can be convenient for example to remove monomorphic loci without having to manually delete 

them. In BayeScan loci are indexed from 1 to the total number of loci. The list of loci to discard 

should simply be a text file with the indexes of loci to discard, one on each line. Discarded loci don’t 

take part in the calculation and no output is provided for them. The indexing of the other loci is 

conserved in the output, allowing easy identification.  

BayeScan automatically recognizes the type of data from the input file. The only exception is when 

using a matrix of SNP genotypes, in which case one has to check the corresponding box in the GUI or 

use the “-snp” argument in the command line version. This option has been used in Foll et al. (2010) 

to compare the power of AFLPs and SNPs to estimate inbreeding coefficient FIS. If you are not 

directly interested in FIS, you should rather use SNPs as a regular codominant data (see below), 

which leads to much faster computation.  

For the output files, one can choose the directory the files will be placed (default is the current 

directory). As different files will be produces, one can also choose a common prefix for all the files. In 

the command line version the default prefix is the name of the input file (without the file extension 

if any). It is also possible to only estimate population specific F-statistics, as this was done in Foll et 

al. (2010). Once BayeScan has successfully loaded your input file, a file called “yourprefix_Verif.txt” 

is created and automatically opened in the GUI version using notepad. This file summarizes the 

parameters you chose and the input data so you can check that everything has been correct 

interpreted. In the GUI version, the estimated remaining time is indicated at the left of the bar. 

BayeScan is using a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm to obtain 

posterior distributions. This algorithm is stochastic and need time to attain convergence, and some 

parameters can be adjusted. With large data it can be very time consuming (days of calculation). The 

sample size corresponds to the number of iterations the program will write out and use for 

estimation. The thinning interval is the number of iterations between two samples. This reduces the 

autocorrelation of the data generated from a Markov chain. A burn-in period can be necessary to 

attain convergence before starting the sampling. The total number of iterations is: sample size 

multiplied by thinning interval, plus burn-in period. Proposal distributions have to be adjusted in 

order to have acceptance rates between 0.25 and 0.45. These values are automatically tuned on the 

basis of short successive pilot runs: by default we first run 5000 iterations, and then the proposals 

are adjusted in order to reduce or increase acceptance rate for each parameter. We make by default 

20 such pilot runs before starting the calculation. At the same time, we use those pilot runs to 

choose the proposal distribution for the reversible jump. The best choice would be to take the full 

conditional posterior distribution of alpha parameters. Because we don't know this distribution, we 

use the pilot runs to have an estimation of the mean and variance for all alpha’s under the saturated 

model (which contains all the alpha parameters). Then we use a normal proposal with these means 

and variances, which is generally close to the full conditional distribution. The default values in 



BayeScan for the MCMC algorithm parameters are quite conservative and ensure good convergence 

in most cases. In particular, codominant or dominant binary data tends to attain convergence very 

rapidly, and a long burn-in period may not be necessary. On the contrary, AFLPs using band intensity 

data require long burn in period as well as many and long pilot runs. When calculation time is not a 

problem, increasing the number of pilot runs would be the first thing to do. Increasing the sample 

size is generally useless, and one should rather increase thinning interval. 

As explained in the introduction, one needs to set the prior odds for the neutral model. When a 

large amount of data is available (in particular a large number of populations and individuals), the 

prior odds will have a low influence on the posterior odds. However, in the extreme case of totally 

uninformative data, the posterior odds will simply be equal to the prior odds. This is for example the 

case for uninformative loci such as monomorphic markers or markers with a very low minor allele 

frequency. We advise people to exclude these markers from the analysis. Using a prior odds of 1 

would mean that for every locus, one assume a priori that the model including selection is as likely 

as the neutral model. This can lead to false positives when testing a large number of markers. For 

example with uninformative data, one would conclude that half of the markers show a signal in 

favour of selection. Higher prior odds will tend to eliminate false positives, but at the cost of 

reducing the power to detect any marker under selection. A value of 10 seems reasonable for the 

identification of candidate loci within a few hundreds of markers, whereas values up to 10 000 are 

generally used in the context of genome wide association studies with millions of SNPs when people 

want to identify only the top candidates. 

Some parameters of the model can be adjusted specifically for AFLP markers as proposed by Foll and 

Gaggiotti (2008) and Foll et al. (2010). Please refer to these articles for further details. In short, when 

using AFLP markers as purely dominant binary data, BayeScan allows for deviation from Hardy-

Weinberg equilibrium for the estimation of allele frequencies throw the introduction of inbreeding 

coefficients FIS. However, it is not possible to estimate those coefficients from binary data, and we 

therefore allow FIS to move freely within its prior range in order to still incorporate the uncertainty 

on this parameter. When prior information is available on FIS (using for example some biological 

knowledge about the species reproduction system, or some estimation based on another set of 

codominant genetic markers), one should include it in BayeScan. By default BayeScan assume a 

uniform prior between zero and one, which may be unrealistic for many species, as this leads to an 

average FIS value of 0.5. In BayeScan there are two ways to define the prior for FIS: (i) using a uniform 

prior, providing the two boundaries of the interval and (ii) using a beta prior, providing the mean and 

variance of the distribution. Note that not all combination of mean and variance can be used with a 

beta prior, and BayeScan will inform you if the values entered cannot be used. 

Finally, you can tell the program to write out some optional additional files:  

 The allele frequencies estimated (posterior mean) for each marker in each population 
when using dominant markers or AFLP amplification intensity data.  
 A file to check that the input files are read correctly and the parameters of the run. 
 Some information about the results of the pilot runs. 
 Some information about the acceptance rates for the different model parameters. 



 

The last two files should generally be only useful for debugging if something goes wrong. 

3. Input file preparation 

BayeScan uses its own input file formats, which depend on the type of data used. All input files are 

simply in text format, but note that UNICODE files are not recognized (be careful when exporting 

from Excel). 

- Codominant markers: 

When using codominant data, we advice people to use PGD spider, a software converter 

developed by Heidi Lischer that can be freely downloaded from:  

http://www.cmpg.unibe.ch/software/PGDSpider/ 

Example files for microsatellites and SNPs are given in the files respectively called 

“test_msats.txt” and “test_SNPs.txt”. You have to indicate the number of loci and the 

number of populations before the actual genetic data (see the examples). For each 

population, there is one line per locus numbered from 1 to the number of loci. Each lines has 

the same format as the following example: 

“8  24    6    4  10   0   6   3   1” 

“8” means that this is the 8th locus.  

“24” is the total number of genes for this marker in this population (twice the number of 

individuals for diploid data). It can be different for different markers to account for missing 

data. 

“6” is the number of alleles for the 8th locus. It has to be the same in all populations (even if 

some alleles are not observed in some populations). 

“4  10   0   6   3   1” are the number of observations for each of the 6 alleles in 

this population for the 8th locus. These number must sum to the total number of genes in 

the population, here 24.  

 

- Dominant binary markers: 

For dominant binary AFLP markers an R script is provided to easily convert data from the 

binary matrix format of AFLPDAT (Ehrich 2006 Molecular Ecology Notes 6: 603-604). The 

input file format is quite similar to the codominant format, but the number of alleles does 

not need to be set (as it is always assumed to be two) and one only need to indicate the 

number of individuals having the band (“1”). An example is given in the file 

“test_binary_AFLP.txt”. Each lines has the same format as the following example: 

“35  30   13” 

“35” means that this is the 35th locus.  

“30” is the number of individuals for this marker in this population. It can be different for 

different markers to account for missing data. 

“13” is the number of individuals having the band (“1”).  

 

- Amplification intensity matrix for AFLP markers: 

The format of this file is the same as the binary matrix format of AFLPDAT, but instead of 

indicating 0 or 1 for each individual (in rows) at each locus (in columns), one needs to write 

the corresponding measure of amplification intensity. The matrix of amplification intensity 

http://www.cmpg.unibe.ch/software/PGDSpider/


can be obtained from software such as GeneMapper. An example is given in the file 

“test_band_intensity_AFLP.txt”. At the beginning of each line, one has to indicate the index 

of individuals starting from 1 and the index of population also starting from 1. 

Using this type of data set in BayeScan requires very careful verification of your data as 

explained in Foll et al. 2010. On average, amplification intensity should be twice for 

dominant homozygotes compared to heterozygotes. This means that the difference in 

amplification intensity due to different genotypes should be higher than the variance due to 

noisy data. In practice, one should check that some marker exhibit a bimodal distribution for 

non-zero amplification intensity. Additionally, one has to be sure that bimodality is not 

caused by artefacts, like different plates, lab technician, day of analysis etc. One way to 

check this is to look for X-linked markers where the two modes should correspond to the 

two sexes. In order to help people dealing with this type of data, we provide some R 

functions in the file “AFLP_data_functions.r”. The different functions are shortly described 

below: 

 clean_intensity_matrix 

We sometime observed some very high values of amplification intensity which can 

correspond to sequencing errors. This function is looking for extreme values and 

replaces them by missing data. Extreme values are defined as being three times 

higher than the 95% quantile of the distribution. This definition can be changed. 

 convert_to_binary_bayescan 

This function converts amplification intensity matrix to dominant binary data in 

BayeScan format. 

 convert_to_binary_matrix 

This function converts amplification intensity matrix to binary data in matrix format 

(AFLPDAT format). 

 convert_from_binary_matrix 

This function converts binary matrix to binary data in BayeScan format 

 pop_subset 

This function allows to easily extract a subset of populations from a BayeScan band 

intensity matrix input file. 

 discard_monomorphic 

This function returns a list of monomorphic markers from an amplification intensity 

matrix input file, ready to be used as a “discarded list” in BayeScan. For band 

intensity data, the definition of “polymorphic” is more complicated, and you may 

need this function. 

More details about the functions can be found in the header of the file by opening it using a 

text editor. 

 

- SNP genotype matrix: 

This can be viewed as a special case of amplification intensity matrix where the genotype of 

individuals is supposed to be known. It has exactly the same format but instead of intensity 

values, on have to indicate for each individual at each locus the observed genotypes coded 

as “0”, “1” and “2”. An example is provided in the file “test_genotype_SNP.txt”. Please note 

that one has to check the corresponding box in the GUI or use the “-snp” argument in the 

command line version to use this type of data. This option has been used in Foll et al. (2010) 



to compare the power of AFLPs and SNPs to estimate inbreeding coefficient FIS. If you are 

not directly interested in FIS, you should rather use SNPs as a regular codominant data (see 

above), which leads to much faster computation. 

 

 

4. Interpreting and plotting outputs 

In this part we assumed that the prefix for the output has been set to “yourprefix”. 

Most of the results you will need are in the “yourprefix_fst.txt” file created at the end of the 

calculation. Each line of the file corresponds to one locus (eventually without the markers listed as 

discarded in the input file), and contains the following values in this order: 

- The index of the locus corresponding to the index in the input file.  

- The posterior probability for the model including selection. 

- The logarithm of Posterior Odds to base 10 for the model including selection. Note that this 

value is arbitrarily fixed to 1000 when the posterior probability is 1 (should be infinity). 

- The q-value for the model including selection. 

- The estimated alpha coefficient indicating the strength and direction of selection. A positive 

value of alpha suggests diversifying selection, whereas negative values suggest balancing or 

purifying selection. 

- The FST coefficient averaged over populations. In each population FST is calculated as the 

posterior mean using model averaging. 

An R function is provided to plot and identify outlier using different criteria from this file. The 

function is called “plot_bayescan” and is located in the “plot_R.r” file. The typical usage of the 

function once loaded into R and being in the right directory is to type: 

> plot_bayescan("yourprefix_fst.txt",FDR=0.05) 

This will list the outliers having a q-value lower than 5% and produce a figure. More details about the 

function can be found in the header of the file by opening it using a text editor. 

The full output of the MCMC algorithm can be found in the file named “yourprefix.sel”. Each line 

corresponds to an iteration in the MCMC algorithm and contains the following parameters in this 

order (the first line contains the name of the columns): 

 The iteration index, starting after pilot runs and burn-in. 

 The logarithm of the likelihood 

 FIS coefficient for every population in the case of dominant or AFLP band intensity data 

 FST coefficient for every population 

 Alpha coefficients for every locus. Counting null value of alpha gives the posterior probability 

for the neutral model. Since version 2.1, these coefficients are only written out if the option 

“-all_trace“ is enabled.  

Plotting posterior distributions and obtaining Highest Probability Density Interval (HPDI) for the 

different parameters is very easy using R and from this file. First you have to load the file (be sure R 

is looking in the right directory): 



> mydata=read.table("yourprefix.sel",colClasses="numeric") 

Then you can choose a parameter you are interested in, for example: 

> parameter="Fst1" 

Now this command will plot the posterior distribution for this parameter: 

> plot(density(mydata[[parameter]]), xlab=parameter, 

main=paste(parameter,"posterior distribution")) 

If you have the “boa” package installed, this command will give you the 95% HPDI: 

> boa.hpd(mydata[[parameter]],0.05) 

The file “yourprefix_Verif.txt” helps to verify that the input file is read correctly. 

Some optional output files can be produced depending on the data and option chosen: 

 The file “yourprefix_prop.txt” gives the results of the pilot runs. 

 The file “yourprefix_AccRte.txt” gives the evolution of the acceptance rate for the different 

model parameters. 

 The file “yourprefix_freq.txt” contains the allele frequencies estimated (posterior mean) for 

each marker in each population when using dominant markers or AFLP amplification 

intensity data. 

 

5. Contact 

I would be very happy to help if you have some questions regarding BayeScan. However, before 

writing me, please ask yourself the following questions: 

- Did I read completely the manual? 

- My input file is correctly formatted? Even if you used software to create it, try to open it 

using a text editor. I personally recommend using Notepad++ (http://notepad-plus-

plus.org/) or TextPad (http://www.textpad.com/) under windows, which are free and very 

powerful.  

- BayeScan is working as expected using the example input files provided? Compare your 

input file with the example files provided. Try to oversimplify your input file to find the 

problem (keep only one population and one locus for example). 

- If you are trying to use the console version, do you know the basic of commands? If not you 

can read this 10 minutes tutorial for example: 

http://wiki.vpslink.com/HOWTO:_Quick_Linux_Reference:_Learn_UNIX_in_10_minutes 

- If you have difficulties to use the R functions, do you know the basics of R? If not you can 

read this introduction: http://cran.r-project.org/doc/manuals/R-intro.html.  

- If you are trying to compile BayeScan for a specific platform, do you have a C++ compiler 

installed? If you don’t even know what this mean, you can ask any informatician around you, 

even if he has no clue about population genetics… Also you will certainly have to remove the 

“-static” option on the Makefile on line 4 to compile under MacOS. 

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://www.textpad.com/
http://wiki.vpslink.com/HOWTO:_Quick_Linux_Reference:_Learn_UNIX_in_10_minutes
http://cran.r-project.org/doc/manuals/R-intro.html


- If you are not sure whether BayeScan can be applied on your favorite species data set, I have 

to admit I certainly won’t be able to know this better than you. The basic assumptions 

behind BayeScan are summarized in the introduction of this manual, and you can find more 

details in the related publications. Each violation of an assumption can lead to an excess of 

false positive or eventually false negative, but this is generally difficult to predict.  The 

correct way to do is to make simulations mimicking your real data and to see what BayeScan 

will produce. For example Fastsimcoal provides a very flexible way to simulate genetic data 

over a wide range of demographic scenario (http://cmpg.unibe.ch/software/fastsimcoal/). 

- If you compare BayeScan with other methods aiming at identifying makers under selection 

(FDist, detsel etc.) and find different results, that’s maybe not a bug, but a nice feature! We 

are working hard to increase the power of our methods and to reduce false positives, so if 

the new methods keep giving the same answers as previous ones, this is useless.  

Of course there are certainly some hidden bugs in BayeScan, and I would be grateful if you identify 

one of them… Despite the previous recommendations you should follow before contacting me, don’t 

hesitate to send me a message here: matthieu.foll@iee.unibe.ch ! 

http://cmpg.unibe.ch/software/fastsimcoal/
mailto:matthieu.foll@iee.unibe.ch

