
fsc26 manual

1

ffaassttssiimmccooaall vveerr 22..66
ffsscc2266

a continuous-time coalescent simulator of genomic diversity under

arbitrarily complex evolutionary scenarios

Laurent Excoffier

Computational and Molecular Population Genetics lab
Institute of Ecology and Evolution
University of Berne
Baltzerstrasse 6
3012 Berne
Switzerland

Swiss Institute of Bioinformatics
1015 Lausanne, Switzerland

Manual ver 2.6, October 2016

fsc26 manual

2

1. TABLE OF CONTENTS

2. Introduction ... 4
Citation ... 4
Discussion group ... 5
Acknowledgements .. 5

3. Changes compared to simcoal2 and fastsimcoal ... 6
Fastsimcoal vs. simcoal2 ... 6
fastsimcoal2 vs. fastsimcoal (January 2013) ... 6
fastsimcoal2.01 vs. fastsimcoal2 (December 2013) .. 6
fastsimcoal2.5 vs. fastsimcoal2.1 (July 2014) ... 6
fastsimcoal2.5.1 vs. fastsimcoal2.5 (SEptember 2014) .. 7
fastsimcoal2.5.2 vs. fastsimcoal2.5.1 (March 2015) ... 7
fastsimcoal2.5.2.8 vs. fastsimcoal2.5.2 (May 2015) ... 7
fastsimcoal2.5.2.21 vs. fastsimcoal2.5.2.8 (NOVEMBER 2015) .. 8
fastsimcoal26 (fsc26) vs. fastsimcoal2.5.2.21 (OCTOBRE 2017) ... 8

4. Getting started ... 10
Intallation .. 10
Running fsc ... 10

5. Structure of input files ... 11
A simple unsubdivided population and DNA sequences .. 11
Migration .. 12
Historical events ... 14
Serial sampling .. 15
Inbreeding ... 17
Simulation of several chromosomal segments ... 18
Recombination .. 21
Input file syntax .. 23

Number of populations samples .. 23
Deme sizes ... 24
Samples sizes, sampling times and inbreeding .. 24
Growth rate.. 25
Migration matrices ... 25
Historical events .. 26
Genetic settings: Chromosomes, Blocks, data types, mutation, and recombination.. 28

Genetic settings subsections ... 28
Specific parameters for different data types .. 29
A special note on the simulation of SNP data ... 30
Examples: .. 30

A relatively complex example with 3 populations, serial sampling, bottleneck, and introgression 31
6. Sampling parameter values from some prior distributions or ranges ... 33

Template file ... 33
Caution ... 33

Estimation file ... 34
Parameters section .. 34
Rules section .. 34
Complex Parameters Section ... 35
Additional syntax ... 35
Reference parameter during parameter optimization .. 35

Parameter rescaling .. 36
Caution ... 36

Output of sampled parameters .. 36
Using predefined values for a particular evolutionary model .. 37

Definition file ... 37
7. Estimating parameters from the site frequency spectrum .. 39

Example of the estimation of a bottleneck demographic history .. 39
Observed SFS ... 39

fsc26 manual

3

Template file .. 40
Estimation file .. 40

Important notes .. 40
Command line .. 41
Running fastsimcoal with options specified in the file "fsc_run.txt" ... 41
Output files .. 42

Observed SFS file names ... 42
One observed sample .. 42
Two observed samples .. 42
More than two observed samples ... 43
Multidimensional SFS ... 43
Ascertained SFS files .. 43

8. Appendix .. 44
Command-line options ... 44
Multithreading .. 47
Sequential Markov coalescent approximation ... 49
Site frequency spectrum ... 50

Minor allele Site frequency spectrum .. 52
Multidimensional site frequency spectrum ... 53
Generating SFS in single files ... 55
Generating non-parametric bootstraped SFS .. 56

Caution and use of block-bootstrap with real data ... 56
Generating parametric bootstraps SFS .. 56
Specifying initial values for bootstrap parameter estimations .. 58

Extension of the SMC’ algorithm to multiple recombination events ... 59
Integration into Approximate Bayesian Computations (ABC) .. 60
Estimation of demographic parameters from the SFS via likelihood maximization ... 61

Simulation-based likelihoods ... 61
Composite likelihoods .. 62
Maximizing the likelihood .. 62
Estimating demographic parameters from SNPs with known ascertainment ... 63

Running fsc26 on a cluster .. 64
Simulation of Genetic diversity .. 64
Estimation of demographic parameters from the SFS ... 66

Comparative Speed tests: fastsimcoal vs. ms and MaCS .. 68
Data sets .. 68
Results .. 68

Comparative Speed tests: fsc21 vs. fsc25 ... 70
Comparative Speed tests: fsc25 vs. fsc25.2.21 vs. fsc26.0 ... 71
Comparative patterns of simulated molecular diversity .. 72

Number of pairwise differences .. 72
Linkage disequilibrium ... 73

Example files for the estimation of demography from the (joint) SFS ... 74
Isolation with Migration (IM) scenario .. 74

Command line for parameter estimation ... 75
Divergence of three populations ... 75

Command line for parameter estimation ... 76
Hierarchical island model ... 76

Command line for parameter estimation ... 78
Human African demography with SNP ascertainment .. 78

Command line for parameter estimation ... 80
9. References ... 81

fsc26 manual

4

2. INTRODUCTION

This manual describes the use of fastsimcoal26, shortened to fsc26, a program to generate the
neutral genomic molecular diversity in current or ancient samples drawn from a population with a
complex demographic history. fsc26 is the third version of fastsimcoal, which was a completely
rewritten version of simcoal2 (Laval and Excoffier 2004), a coalescent simulation program
implementing a generation by generation approach while fsc26 is based on a much faster
continuous time approximation. Despite a completely new coalescent engine, fastsimcoal26 uses
exactly the same input files as fsc26, and it produces very similar output files.
Fsc3 typically generates many replicates of random outcome of molecular diversity under a user-
defined evolutionary scenario. The evolutionary scenario is defined in an input parameter file
(extension .par) and the output diversity is written in arlequin project files (extension .arp) that can
then be processed with arlequin or arlsumstat (Excoffier and Lischer 2010) to get distributions of
various summary statistics. Additional options of fastsimcoal2 can be specified on the command line
(type "fastsimcoal26 -h" for help on command line options).
fastsimcoal2 can handle very complex evolutionary scenarios including an arbitrary migration
matrix between samples, historical events allowing for population resize, population fusion and
fission, admixture events, changes in migration matrix, or changes in population growth rates. The
time of sampling can be specified independently for each sample, allowing for serial sampling in the
same or in different populations.
Different markers, such as DNA sequences, SNP, STR (microsatellite) or multi-locus allelic data can
be generated under a variety of mutation models (e.g. finite- and infinite-site models for DNA
sequences, stepwise or generalized stepwise mutation model for STRs data, infinite-allele model for
standard multi-allelic data).
Fsc3 can simulate data in genomic regions with arbitrary recombination rates, thus allowing for
recombination hotspots of different intensities at any position. Fsc3 implements an approximation
to the ancestral recombination graph in the form of sequential Markov coalescent allowing it to
very quickly generate genetic diversity for >100 Mb genomic segments.
Compiled versions of fsc26 for Windows, Linux or Mac Os X are available on
http://cmpg.unibe.ch/software/fastsimcoal26
Since fastsimcoal2 output is meant to be interfaced with Arlequin or arlsumstat, the reader may
also want to get more information on Arlequin on http://cmpg.unibe.ch/software/arlequin35
Since ver 2.1, fastsimcoal can be used to estimate demographic parameters from the (joint) SFS, as
described in Excoffier et al. (2013)

CITATION

The following citations should be used for fsc26:
• Excoffier, L. and M. Foll. 2011. fastsimcoal: a continuous-time coalescent simulator of

genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27: 1332-
1334.

• Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., and M. Foll (2013) Robust demographic
inference from genomic and SNP data. PLOS Genetics 9(10):e1003905.

http://cmpg.unibe.ch/software/fastsimcoal3
http://cmpg.unibe.ch/software/arlequin35

fsc26 manual

5

DISCUSSION GROUP

A Google discussion group has been created to discuss any issue related to fastsimcoal. It is
available on https://groups.google.com/forum/#!forum/fastsimcoal

ACKNOWLEDGEMENTS

Many people have contributed to the development and improvement of simcoal and fastsimcoal.
Historically, John Novembre has contributed to the early development of simcoal, and Guillaume
Laval has written most routines dealing with recombination and the ancestral recombination graph
in simcoal2. Mathias Currat has also contributed in improving the earlier coalescent code shared
between simcoal2 and SPLATCHE. Thierry Schuepbach contributed to the initial development of the
multithreaded version. Some piece of code written by all these persons might still be present in
some parts of fsc25, even though most has been rewritten when implementing the fastsimcoal2
continuous time coalescent approach, the SMC’ recombination framework or the multithreaded
version. fastsimcoal2 has also benefitted from many suggestions from Isabel Alvès, Isabelle
Duperret, Matthieu Foll, Stephan Peischl, and Benjamin Peter. The use of tpl and est file is largely
inspired by the corresponding settings files of ABCToolBox developed by Daniel Wegmann, and its
syntax also follows developments of Samuel Neuenschwander and Mathias Currat in earlier ABC
work. The latest developments in fsc26 have been thoroughly discussed, tested and debugged by
Vitor Sousa. I would also like to thank all users of fastsimcoal who have been reporting bugs directly
by email or by using the fastsimcoal Google group list.

https://groups.google.com/forum/#!forum/fastsimcoal
https://groups.google.com/forum/#!forum/fastsimcoal

fsc26 manual

6

3. CHANGES COMPARED TO SIMCOAL2 AND FASTSIMCOAL

FASTSIMCOAL VS. SIMCOAL2

1. Faster continuous-time coalescent simulations
2. Faster recombination model
3. Serial sampling
4. Generation of DNA sequence data under the infinite-site model
5. Sampling of parameter values from prior distributions
6. Computation of population-specific and joint site frequency spectrum
7. Optional output of all trees under the serial Markov coalescent model of recombination
8. RFLP data cannot be simulated anymore

FASTSIMCOAL2 VS. FASTSIMCOAL (JANUARY 2013)

1. Several bug corrections
2. Optional output of all simulated sites (including monomorphic sites)
3. Optional use of a manual seed for the random number generator (--seed xxx command line

option)
4. Simulation of ascertained SNP data
5. Generation of the (joint) site frequency spectrum (SFS) from DNA sequence data
6. Generation of multidimensional (>2D) SFS
7. Ability to estimate demographic parameters from the site frequency spectrum inferred from

DNA sequences or ascertained SNP chips
8. -s option now requires an additional number specifying the number of SNPs to output

FASTSIMCOAL2.01 VS. FASTSIMCOAL2 (DECEMBER 2013)

1. Several bug corrections
2. User manual update
3. 64 bit version for windows
4. Consolidated par file reading
5. Outputs par file with ML parameters estimation from SFS at the end of the estimation. They

are found in file "<template_file_name>_maxL.par".

FASTSIMCOAL2.5 VS. FASTSIMCOAL2.1 (JULY 2014)

1. The fastsimcoal2 program ver2.5 has been renamed fsc25 (shorter name is better)
2. Use of a different random number generator (same seed will produce different results than

in fastsimcoal21)
3. Code optimization resulting in up to 1-75% speed gain for single threaded version (see

benchmark)
4. Multithreading (64 bit only), for more speed gain on a multicore processor desktop

machine (see benchmark)
5. Result files for parameter estimation now output in separate result directory
6. More options to generate SNP data (see below)
7. New specification for MAF SFS (see below)

fsc26 manual

7

8. Added a version for macOSX running in earlier versions (e.g. from 10.6 upwards) (thanks to
Iain Mathieson)

9. More tolerant reading of input files (thanks to Allan Strand)
10. Rules in est files can now be used for parameter estimations

FASTSIMCOAL2.5.1 VS. FASTSIMCOAL2.5 (SEPTEMBER 2014)

1. Example files are back in zip files (thanks to Alfredo)
2. Description of the exact format of the multiSFS format has been modified in the manual

(thanks to Vitor Sousa and Raphael Leblois)
3. Problem in implementing recombination with multiple runs (option -nx where x>1) (thanks

to Vitor Sousa and Yang)
4. More precision on branch length when outputing tree in NEXUS format (thanks to Shuo

Yang)
5. Faster implementation of recombination under the SMC' algorithm and its extension to

multiple recombinations between sites

FASTSIMCOAL2.5.2 VS. FASTSIMCOAL2.5.1 (MARCH 2015)

1. Bug corrections:
• Fsc251 asked for a joint SFS when two populations samples were listed in tpl file but

only one contained active lineages. Bug found by Charleston Chiang.
• TMRCA was not found in case of recombination and demes with some inactive

lineages. Bug found by Ryan Bohlender)
• Fsc251 was not generating output files when path was provided before input file

names (par or tpl).Note that fsc25 should always be run from the directory
containing the input files, even though the program can be can be physically located
elsewhere. Bug found by Greer Dolby.

• Fsc251 was not taking into account growth rate changes specified in historical events
(bug introduced in 2.5.1, and it was not present in ver 2.5.0).

2. -k option has no upper limit anymore, and its default value is 100,000
3. Added new -P command line option, allowing to get the global pooled SFS obtained by

pooling all lineages as if in a single population
4. Added two new operators in est file for complex parameters: %min% and %max%
5. Added new functions in est files for complex parameters: abs(), exp(), log(), log10(), pow10()
6. Added a new "bounded" keyword in est file to specify that the upper range of a simple

parameter is bounded. Needs to be listed after the "output" or "hide" keywords.
7. Added two new keywords for historical events: "keep" and "nomig".
8. Expected joint SFS is now rescaled such that the sum of sfs entries for polymorphic sites is 1.

FASTSIMCOAL2.5.2.8 VS. FASTSIMCOAL2.5.2 (MAY 2015)

1. Bug corrections:
• Incorrect simulation of mutations in case of high recombination rates. There was a

strong negative correlation between the recombination rate and the number of
polymorphic loci, when adjacent sites were the object of recombination. The number of

fsc26 manual

8

mutation was underestimated for recombination rates, say >1e-7. This bug affected ALL
previous fsc releases.

• Possible overestimation of TMRCA and overall tree size in case of recombination. Bug
present since early fsc2 release.

• Crash of fsc2 in case of very high recombination rate with DNA data
• Incorrect writing of recombination positions in output arp file when simulating

several threads
• maxObsLhood was not correctly computed when estimation of parameters in a

scenario with a single population
• Change of migration matrix not implemented after first recombination event (thanks

to Stefano Mona)
• Computation of MAF SFS incorrect in case of multiple mutations per site (when -I

option not provided and high mutation rates)

2. Speed optimization
3. Output of random DNA nucleotides instead of N for monomorphic loci with the -S option.
4. Possibility to run fsc without command line option if file "fsc_run.txt" is present and contains

run path and command line options in current working directory.

FASTSIMCOAL2.5.2.21 VS. FASTSIMCOAL2.5.2.8 (NOVEMBER 2015)

1. Bug corrections:
• Non implementation of exponential growth at time zero for the first simulated tree.

Initial population size therefore does not change for that tree. Note that specifications of
exponential growth rates in historical events are correctly implemented even in the first
tree. Exponential growth is then correctly implemented in the next simulated trees
(thanks to Anand Bhaskar)

• Crash in case of very large samples sizes (e.g. 60,000) (thanks to Anand Bhaskar)
• Incorrect computation of the max lhood when non integers are used in the observed sfs

(thanks to Andi Knautt)
• Reported expected SFS was that of the last iteration and not that associated to the max

lhood parameter estimates
• In case of crash due to bad tpl file, parameters reported in file called <generic

name>_bad.par were not those leading to the crash

2. Speed optimization. Up to 30% speed gain.
3. Output of time to MRCA in file <generic name>_mrca.txt with new compiler directive --

recordMRCA. Beware that this option really slows down computations. Note that we also
output the he deme in which MRCA occurred.

FASTSIMCOAL26 (FSC26) VS. FASTSIMCOAL2.5.2.21 (OCTOBRE 2017)

1. Simple implementation of individual inbreeding
• The average inbreeding coefficient of individuals in a population can now be specified as

a third optional parameter in the sample size definition. In this case, the sample age
needs to be defined (set to zero in most applications), as:
<sample size> <sample age> <inbreeding coefficient>

2. Possibility to define initial parameter values for demographic inference

fsc26 manual

9

• Option -initvalues file.pv , where file.pv lists initial non-complex parameter values to
use. This option is mainly useful when computing bootstrap confidence intervals, as it
allows one to use less replicates for each bootstrap data set. A *.pv file is now
automatically generated after each parameter estimation by fsc26.

3. Computation of MAF 1D and 2D SFS with option --foldedSFS by simply folding the
corresponding unfolded SFS (for compatibility with angsd, where the minor allele is
computed separately for each SFS)

4. Optional faster but approximate log computations with option --logprecision n, where n is a
number between 10 and 23 specifying the precision of the computation of logarithms. 23
means full precision and is the default value.

5. Optional parameter optimization without taking singletons into account specified with
option --nosingleton

6. Syntax changes
• For parameter optimization,

o -N option has been suppressed, and maximum no. of iteration is now equal to that
set by the -n option

o The number of cycles to performed is now fixed and only specified with option -L
o The -l option is now optional and means something different. It is now used to specify

the number of cycles where information on monomorphic sites is used. After these
initial cycles, likelihood will only be computed (and optimized) on the polymorphic
sites. This option needs to be used together with the “reference” keyword in the .est
file (see section on est file).

o The -M option is now just a flag mentioning we want to perform parameter
estimation from the observed SFS. It should therefore not be followed by any
number.

• Removed -D option to produce output in dadi format, as this is virtually identical to the
multidimensional SFS output, barring the header

7. Implementation of instantaneous bottlenecks with keyword instbot added to historical event
definition. Only works in absence of recombination for the moment.

8. Bug corrections:
• Expected marginal SFS were not computed when computing expected SFS with FREQ

data
• Wrong likelihoods were computed with option -0
• No more (hopefully) program crash when using large recombination rates

fsc26 manual

10

4. GETTING STARTED

Compiled version of fastsimcoal2 and example files can be downloaded from
http://cmpg.unibe.ch/software/fastsimcoal2.
The archives include an executable version of fastsimcoal2 for a given platform, the fastsimcoal2
pdf manual, as well as examples par files and example template (tpl), distribution (est), and
definition files (def) for a variety of simple evolutionary scenarios and several types of markers, with
and without recombination. We have also added a few site frequency spectra (SFS) files as well as
associated tpl and est files to try to estimate parameters from the SFS (new to fastsimcoal2)

INTALLATION

Unzip the archive file to the directory of your choice. A version of fsc26 should be present (fs3.exe
under windows, or fsc26 under linux of MacOSX). On a command line, simply type "fsc26" and
you will have a list of the different command-line options available to run fsc26.
In order to access fsc26 from any directory on your hard disk, put the directory on your path under
windows, or put fsc26 in your ~/bin directory under linux or Mac OS X.

RUNNING FSC

There are 3 ways to simulate genetic data with fastsimcoal2
1) Simulate data under an evolutionary scenario with parameter values defined in an input

parameter file
fsc26 -i test.par -n 100

fastsimcoal2 will use the scenario and the parameter values defined in the parameter file test.par
and make 100 simulations under this scenario.
2) Simulate data under an evolutionary scenario with parameter values randomly drawn from priors

fsc26 -t test.tpl -n 10 -e test.est -E 100

fsc26 will use the scenario defined in the template file test.tpl and generate 100 sets of parameter
values by randomly drawing these values from the priors defined in the file test.est. 10 simulations
will be done for each sets of randomly drawn parameter values.
3) Simulate data under an evolutionary scenario with parameter values defined in an external

definition file
fsc26 -t test.tpl -n 100 -f test.def

fsc26 will use the scenario defined in the template file test.tpl and use the parameter values found
in the definition file test.def. 100 simulations will be done for each set of predefined parameter
values.
Additional descriptions of command line options and input file format can be found in the next
chapters

http://cmpg.unibe.ch/software/fastsimcoal2

fsc26 manual

11

5. STRUCTURE OF INPUT FILES

A SIMPLE UNSUBDIVIDED POPULATION AND DNA SEQUENCES

Let's consider the case of a single population made up of 20000 haploid individuals (or 10000
diploid individuals) where we want to generate diversity along a 10 Kb DNA sequence, with
mutation rate 82 10µ −= × / bp / gen.

The simcoal2-compatible input file 1popDNA.par describing such a scenario would look like:
1popDNA.par

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
20000
//Sample sizes
10
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
0 historical event
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000 0.00000 0.00000002 0.33

and with the following command line

fsc26 -i 1popDNA.par -n1

fsc26 generates the following Arlequin-formatted output file, which is located in a directory having
the same name as the input file but with the extension .arp removed, 1popDNA in our case:
./1popDNA/1popDNA_1_1.arp

#Arlequin input file written by the simulation program fastsimcoal.exe

[Profile]
 Title="A series of simulated samples"
 NbSamples=1

 GenotypicData=0
 GameticPhase=0
 RecessiveData=0
 DataType=DNA
 LocusSeparator=NONE
 MissingData='?'

[Data]
 [[Samples]]

#Number of independent chromosomes: 1
#Polymorphic positions on chromosome 1
#288, 800, 1367, 1772, 2045, 2191, 2328, 3258, 3385, 3591, 4162, 5176, 5332, 6128,
6224, 6442, 6455, 7846, 8026, 8536

 SampleName="Sample 1"
 SampleSize=10
 SampleData= {
1_1 1 TAAACATATACCTACGACTC
1_2 1 TAAACATATACCTACGACTC
1_3 1 TTGTACTTTGCCTCCACCTC

fsc26 manual

12

1_4 1 TTGTACGTTGCCTCCACCTC
1_5 1 TAAACATATACCTACGACAC
1_6 1 TAAACATATACCTACGACTC
1_7 1 TAGAAATATAACTAAGCATG
1_8 1 GAGTACTTAACGCACACCTC
1_9 1 TTGTACTTTGCCTCCACCTC
1_10 1 TTGTACTTTGCCTCCACCTC

}

[[Structure]]

 StructureName="Simulated data"
 NbGroups=1
 Group={
 "Sample 1"
 }

New to fsc26, one now only outputs polymorphic sites for DNA sequences and the position of these
sites is provided as a comment above the sample definition.
In order to output all sites, irrespective of their polymorphic status, use the -S command line option.

MIGRATION

fsc26 can generate data from samples drawn from a subdivided population. For instance the
following input file describes an asymmetric 2-deme island model:

2popSTRmigr.par

//Number of population samples (demes)
2 samples to simulate :
//Population effective sizes (number of genes)
1000
1000
//Samples sizes
5
5
//Growth rates : negative growth implies population expansion
0
0
//Number of migration matrices : 0 implies no migration between demes
1
//migration matrix
0.000 0.005
0.001 0.000
//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
0 historical event
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
MICROSAT 10 0.0000 0.0005 0 0

The population sizes are of 1000 genes each, and we want to generate samples of size 5 in each
population. One migration matrix is defined, listing the migration rates between the two
populations. The migration matrix can be asymmetric, and in the case the entry mij list the
migration rates backward in time from population i to population j, i representing the row, and j
the column. The above-mentioned matrix

0.000 0.005
0.001 0.000

fsc26 manual

13

states that, for each generation backward in time, any gene from population 0 has probability 0.005
to be sent to population 1, and that a gene from population 1 has a probability 0.001 to move to
population 0.
Note that if no migration matrix is defined, no migration is assumed between populations.
Coming back to our example input file above, the data to be generated consist here of 10
microsatellite markers that are fully linked on a chromosome, with mutation rate 45 10µ −= × per
generation per locus. A pure stepwise mutation model without range constraints is assumed.
The following command line

fsc26 -i 2popSTRmigr.par -n1

produces the following Arlequin output:
2popSTRmigr_1_1.arp

#Arlequin input file written by the simulation program fastsimcoal.exe

[Profile]
 Title="A series of simulated samples"
 NbSamples=2

 GenotypicData=0
 GameticPhase=0
 RecessiveData=0
 DataType=MICROSAT
 LocusSeparator=WHITESPACE
 MissingData='?'

[Data]
 [[Samples]]

#Number of independent chromosomes: 1
#Polymorphic positions on chromosome 1
#1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 SampleName="Sample 1"
 SampleSize=5
 SampleData= {
1_1 1 500 499 500 500 499 500 499 500 501 503
1_2 1 498 498 501 502 500 501 498 500 499 499
1_3 1 499 498 500 501 500 501 499 501 502 499
1_4 1 498 498 500 502 500 501 498 501 499 500
1_5 1 498 497 500 503 500 500 498 500 500 499

}
 SampleName="Sample 2"
 SampleSize=5
 SampleData= {
2_1 1 500 499 500 500 499 500 499 500 500 503
2_2 1 498 498 500 501 500 501 498 501 499 499
2_3 1 500 499 500 500 499 500 499 500 500 503
2_4 1 501 499 500 500 499 500 499 500 500 503
2_5 1 499 498 500 501 501 501 499 501 501 499

}

[[Structure]]

 StructureName="Simulated data"
 NbGroups=1
 Group={
 "Sample 1"
 "Sample 2"
 }

fsc26 manual

14

Note that for microsatellite data, the ancestral allele at each locus is arbitrarily set to have 500
repeats, and that different numbers indicate different number of repeats.

HISTORICAL EVENTS

Historical events can be used to:
• Change the size of a given population
• Change the growth rate of a given population
• Change the migration matrix to be used between population
• Move a fraction of the genes of a given population to another population. This amounts to

implementing a (stochastic) admixture or introgression event.
• Move all genes from a population to another population (population). This amounts to

fusing two populations into one, looking backward in time, or implementing a population
fission looking forward in time.

• One or more of these events at the same time
Note that several events can be defined at different or at the same time in the past, as in the
following example file

2popSTRdiv.par

//Number of population samples (demes)
2 samples to simulate :
//Population effective sizes (number of genes)
1000
1000
//Samples sizes
5
5
//Growth rates : negative growth implies population expansion
0
0
//Number of migration matrices : 0 implies no migration between demes
2
//migration matrix
0.000 0.0005
0.0001 0.000
//migration matrix
0.000 0.000
0.000 0.000
//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
2 historical event
1000 0 0 0 1 0 1
10000 1 0 1 10 0 1
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
MICROSAT 10 0.0000 0.0005 0

In this example, we have two migration matrices, and the first migration matrix is used by default
until it is changed by a historical event. The second matrix has all entries set to zero, and thus
specifies an absence of migrations.
The first historical event

1000 0 0 0 1 0 1

specifies that 1000 generations in the past, we need to change the migration matrix and use
migration 1. In doing that it basically stops all migrations between demes.

fsc26 manual

15

The second historical event
10000 1 0 1 10 0 1

says that 10,000 generations in the past all the genes from deme 1 move to deme 0, the size of
which is resized by a factor 10 (to 10,000 genes).
You can check that these historical events are correctly understood by fsc26 by looking at the
console output, which should look like

Alternatively, the simulations conditions are also output in the file
./2popSTRdiv/2popSTRdiv_1.simparam, located in the directory 2popSTRdiv, together with the
Arlequin project 2popSTRdiv_1_1.arp.

SERIAL SAMPLING

In fsc26, it is possible to specify at which time sampling was performed in the past. This is simply
achieved by adding sampling time after the specification of the sample size. If no time is specified

fsc26 manual

16

after the sample size, than sampling at present time is assumed, which also ensures compatibility
with simcoal2 input files. The use of this new feature is shown in the simple following input file.

3popDNAserial.par

//Number of population samples (demes)
3
//Population effective sizes (number of genes)
1000
0
0
//Sample sizes
5
3 500
2 1000
//Growth rates : negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
2 historical event
500 1 0 1 1 0 0
1000 2 0 1 1 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000 0.00000 0.00000002 0.33

In this scenario, 5 sequences were sampled at the present time, 3 sequences 500 generations ago,
and 2 sequences 1000 generations ago. As we consider that these 3 samples come from the same
population, we simply use 2 historical events to transfer these ancient DNA sequences to deme 0 at
the time of their sampling.
The resulting genealogy can be visualized by asking fsc26 to output coalescent trees. This is done
with the -T option on the command line. the following command

fsc26 -i 1popDNAserial.par -n 2 -T

produces tree files in the nexus format, looking like
./3PopDNAserial/3PopDNAserial_1_true_trees.trees

#NEXUS
begin trees; [Treefile generated by fsc26 .exe (Laurent Excoffier)]

 tree NumGen_tree_1_1_pos_0 = [&U] ((10.3:103, ((4.1:269, 3.1:269):728,
7.2:497):106):1197, ((8.2:580, 9.3:80):852, (6.2:572, (5.1:811, (2.1:55,
1.1:55):756):261):860):368);
 tree NumGen_tree_2_1_pos_0 = [&U] ((9.3:36, (((1.1:40, 3.1:40):559,
8.2:99):393, ((2.1:507, 6.2:7):375, (4.1:551, 5.1:551):331):110):44):2881, (7.2:1533,
10.3:1033):1884);
end;

These trees can be conveniently visualized with visualization tools, like FigTree
(http://tree.bio.ed.ac.uk/software/figtree) freely available for Windows, Linux, or Mac OS X.
our tree of 10 DNA sequences looks like:

http://tree.bio.ed.ac.uk/software/figtree

fsc26 manual

17

We indeed see that the first 5 sequences from deme 0 were sampled at time 0, that the 3
sequences from deme 1 were sampled at time 500, and that the 2 sequences of deme 2 were
sampled at time 1000.
Note that it may not be a good idea to record trees for long DNA sequences with recombination, as
trees files can become extremely large (>100Mbytes for 10Mbase sequences).
Note also that in fsc26 branch lengths are now expressed in fractions of generations (e.g. 1205.123)

INBREEDING

With version 2.6 of fastsimcoal, we introduce the possibility to simulate a simple form of
inbreeding, but this only in absence of recombination.
The average inbreeding coefficient of a population has to be indicated as the third parameter in the
sample size section.
For instance, in the following file, we specify that an individual sampled 2000 generations has an
inbreeding coefficient of 1/8. This would be similar to the inbreeding coefficient recently estimated
for a Neanderthal individual from the Denisova cave in the Altai mountains (Prufer et al. 2014).
3popDNAInbreeding.par

//Number of population samples (demes)
3
//Population effective sizes (number of genes)
10000
10000
0
//Sample sizes, ages and inbreeding
6
3

fsc26 manual

18

2 2000 0.125
//Growth rates : negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr.
matrix
2 historical event
500 1 0 1 1 0 0
20000 2 0 1 1 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000 0.00000 0.00000002 0.33

Note that this parameter is optional, and the default inbreeding coefficient is zero. However, if it is
non-zero, then the optional age of the sample (which can be zero for present samples) needs to be
specified as well.
The way fsc26 simulates inbreeding is very simple and differs from a classical structured coalescent
way to simulate inbreeding (see e.g. Nordborg 1997, Nordborg and Donnelly 1997). Since fsc26,is
essentially an haploid coalescent simulator, we assume here pairs of lineages in a given deme are
present in a diploid individual, i.e. lineages 1 and 2 and in individual 1, lineages 3 and 4 are in
individual 2, etc… Then, at sampling time, each pair of lineage has a probability equal to the
inbreeding coefficient to instantaneously coalesce. If it coalesces, the number of lineages is
decremented, else nothing happens. No further round of inbreeding is assumed going backward in
time. This procedure is repeated for each independent locus.

SIMULATION OF SEVERAL CHROMOSOMAL SEGMENTS

It is easy to simulate several chromosomal segments with different types of markers and different
recombination or mutation rates.
In the following example files, one simulates 2 independent non-recombining chromosome
segments with the same structure. Each chromosome is made up of 4 blocks, each time with a
different mutation model.

fsc26 manual

19

1PopMultiLocus.par

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
10000
//Sample sizes
5
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr.
matrix
0 historical event0
//Number of independent loci [chromosome]
2 0
//Per chromosome: Number of linkage blocks
4
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 1000 0 0.0000002 0.33
SNP 3 0 0
MICROSAT 3 0 0.0005 0 0
STANDARD 2 0 0.001

The data section of a typical output of this scenario is :
./1PopMultiLocus/1PopMultiLocus_1_1.arp

[Data]
 [[Samples]]

#Number of independent chromosomes: 2
#Polymorphic positions on chromosome 1
#40, 255, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008
#Polymorphic positions on chromosome 2
#216, 382, 485, 899, 997, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008

 SampleName="Sample 1"
 SampleSize=5
 SampleData= {
1_1 1 CC 000 499 502 499 5 2 AGTGA 100 501 501 503 10 16
1_2 1 CG 011 501 499 500 1 4 CCGCA 011 500 503 498 9 10
1_3 1 GG 000 498 501 500 6 2 ACGCG 001 498 500 498 6 10
1_4 1 GG 100 499 501 500 6 2 ACGCA 001 500 503 499 10 13
1_5 1 CG 000 500 499 501 2 4 ACGCA 001 498 504 498 8 8

}

fsc26 manual

20

One can also simulate several chromosomes with completely different structures, like

1PopMultiLocusDiffChrom.par

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
10000
//Sample sizes
5
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr.
matrix
0 historical event0
//Number of independent loci [chromosome]
2 1
//Per chromosome: Number of linkage blocks
2
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 1000 0 0.0000002 0.33
SNP 3 0 0
//Per chromosome: Number of linkage blocks
2
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
MICROSAT 3 0 0.0005 0 0
STANDARD 2 0 0.001

The difference with the previous example is that we explicitly tell fsc26 to simulate 2 chromosomes
with different structures by stating

//Number of independent loci [chromosome]
2 1

The second number (1) indicates we want to describe different chromosomal structures. Now we
need to repeat the block definition for the two structures, while a single block definition was used
previously and simply repeated for simulating the two identical chromosomes.
The following output is now produced:
./1PopMultiLocusDiffChrom/1PopMultiLocusDiffChrom_1_1.arp

[Data]
 [[Samples]]

#Number of independent chromosomes: 2
#Polymorphic positions on chromosome 1
#85, 105, 169, 277, 372, 470, 629, 635, 702, 934, 960, 998, 1001, 1002, 1003
#Polymorphic positions on chromosome 2
#1, 2, 3, 4, 5

 SampleName="Sample 1"
 SampleSize=5
 SampleData= {
1_1 1 ACCGGCCCACTA 000 502 501 500 19 20
1_2 1 TTATTCGTATTG 111 504 500 501 21 25
1_3 1 ACCGGTCCACTA 000 503 500 501 22 23
1_4 1 TTATGCCTCTCG 111 501 499 506 23 24
1_5 1 TTATGCCTATTG 111 500 498 504 23 21

}

fsc26 manual

21

RECOMBINATION

Like simcoal2, fsc26 can generate molecular diversity along recombining chromosomal segments,
and recombination rates between adjacent loci are specified just after the definition of the data
type and the number of loci of this type, like in the following example file

1PopDNArec.par

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
20000
//Sample sizes
10
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr.
matrix
0 historical event
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000 0.00000001 0.00000002 0.33

In this case, we want to simulate 10 DNA sequences of 10 Kb with a recombination rate of 810r −=
and mutation rate 82 10µ −= × .

While the syntax to specify recombination is the same as in simcoal2 , the underlying simulation
model is completely different, as we now use a sequential Markov coalescent model (McVean and
Cardin 2005) to simulate recombination. In brief, instead of using the classical ancestral
recombination graph for the whole chromosomal segment, we generate a first tree on the left of
the segment to be simulated. Then we compute where the next recombination event will occur on
the segment, implement one recombination event randomly on the tree, detach the recombining
lineage from the left tree, and leave this recombining lineage evolve until it coalesces with one of
the lineage on the left tree, potentially changing the topology and the height of the tree. See the
Sequential Markov Coalescent section for more details.

In the console, fsc26 list the position of each recombination breakpoint and the MRCA of the
resulting tree, as in

fsc26 manual

22

The produced Arlequin output file is similar to what would be obtained without recombination, but
the nexus tree file now lists all trees produced along the chromosomal segments, as

./1PopDNArec/1PopDNArec_1_true_trees.trees

#NEXUS
begin trees; [Treefile generated by fastsimcoal.exe (Laurent Excoffier)]

 tree NumGen_tree_1_1_pos_0 = [&U] ((5.1:3556, (4.1:2838, 8.1:2838):718):49275,
((2.1:707, (6.1:384, 7.1:384):323):36435, ((3.1:3209, 9.1:3209):12690, (1.1:148,
10.1:148):15751):21243):15689);
 tree NumGen_tree_1_2_pos_36 = [&U] ((5.1:3556, (4.1:2838, 8.1:2838):718):49275,
((2.1:707, (6.1:384, 7.1:384):323):26269, ((3.1:3209, 9.1:3209):12690, (1.1:148,
10.1:148):15751):11077):25855);
 tree NumGen_tree_1_3_pos_1442 = [&U] ((5.1:3556, (4.1:2838,
8.1:2838):718):49275, (((3.1:3209, 9.1:3209):4915, (2.1:707, (6.1:384,
7.1:384):323):7417):18852, (1.1:148, 10.1:148):26828):25855);
 tree NumGen_tree_1_4_pos_1740 = [&U] ((5.1:3556, (4.1:2838,
8.1:2838):718):49275, (((3.1:3209, 9.1:3209):4915, (2.1:707, (6.1:384,
7.1:384):323):7417):25747, (1.1:148, 10.1:148):33723):18960);
...
Etc...
...
end;

Note that these trees can also all be browsed individually e.g. in FigTree to see the changes in
topology produced by the recombination events. For instance, using different settings, here are the
changes introduced by 3 recombination events having occurred in the subtree connecting nodes 1
to 5 (approximately located by red dots). Note that additional recombination events fell on other
branches of the tree but did not lead to observable changes in tree topology.

fsc26 manual

23

INPUT FILE SYNTAX

The syntax of the input file is the same as in simcoal2, with a few exceptions.
The input file is divided into the following sections that are each time separated by a comment line.
The order of these sections is fixed and cannot be changed.

• Number of populations samples
• Deme sizes
• Sample sizes, sampling times and inbreeding
• Growth rates
• Migration matrices
• Historical events
• Genetic information

NUMBER OF POPULATIONS SAMPLES

This section begins with a comment line. On the second line, the first item should be the number of
samples (or demes) to simulate. Additional items on the second line are ignored.

//Number of population samples (demes)
1

or
//Number of population samples (demes)
2 samples to simulate

Tree 1 Tree 2

Tree 3 Tree 4

fsc26 manual

24

DEME SIZES

This section begins with a comment line, and then has as many lines as demes to be simulated, as
mentioned in the previous section.
So if only one sample was defined previously:

//Population effective sizes (number of genes)
20000

or if, say, three samples were defined previously:

//Population effective sizes (number of genes)
20000
10000
100

Note that the deme size corresponds here to the number of genes present in a population, which
would be the number of individuals for haploid species or to two times the number of individuals
for diploid species.

SAMPLES SIZES, SAMPLING TIMES AND INBREEDING

This section begins with a comment line, and then lists, for as many samples as defined in the first
section, the haploid size of the sample, the sampling time (the number of generation backward in
time when the samples were identified), and the average inbreeding level of the samples. If the
sampling time and the inbreeding coefficient are omitted, values of of zero are assumed (present
sampling and no inbreeding).
So the following input

//Sample sizes
10

is equivalent to
//Sample sizes
10 0 0

Other possibilities are:
//Sample sizes
10 20
100 1000

for sampling at 20 and 1000 generations for lineages in deme 1 and 2, respectively.
Also

//Sample sizes
5
30
0

shows that sample sizes of zero are possible, which just means that no genes were sampled in a
given deme at time zero. This additional empty deme may be used in a given evolutionary scenario,
for instance as a source (ghost) population for the currently sampled demes.
Finally

fsc26 manual

25

//Sample sizes
6 0 0.00625
2 1000
2 2000 0.125

shows that i) sampling times is compulsory (even if it is nil) if inbreeding is specified (0.0625 in deme
0), ii) inbreeding coefficient is optional (assumed zero) when sampling time is specified (at
generation 1000 in deme 1).

GROWTH RATE

This section lists the initial growth rates for all population samples
So the following input

//Growth rates : negative growth implies population expansion
0

means that the sampled deme has a stationary population size. Note that growth rates are
measured here backward in time, so that negative growth rates imply a forward population
expansion. Generally, if the current population size is N0, and the growth rate is i then the

population size t generations ago is given by 0 ert
tN N= .

In the following example, two populations are shrinking backward in time, implying that the
sampled demes went through a recent population expansion

//Growth rates : negative growth implies population expansion
-0.001
-0.025

Note that the growth rates can be modified at any time by the use of a historical event.

MIGRATION MATRICES

As usual, this section begins with a comment line, and is followed by a line with the number of
migration matrices. If there is no migration between demes , then simply enter 0, like

//Number of migration matrices : 0 implies no migration between demes
0

If we assume that there are two demes connected by migration, then one could enter for instance
the following two migration matrices:

//Number of migration matrices : 0 implies no migration between demes
2
//migration matrix
0.000 0.0005
0.0001 0.000
//migration matrix
0.000 0.000
0.000 0.000

Here the two migration matrices are put below each other separated by a comment line.
The first migration matrix is asymmetric, with deme 0 sending migrant backward in time at rate
0.0005 towards deme 1, while deme1 is sending migrants at a lower rate 0.0001 towards deme 0.

fsc26 manual

26

Therefore, the non-diagonal entries {mij} of each migration matrix represent the probability for any
given lineage to move backward in time from deme i to deme j. The diagonal entries are ignored. In
the above example, the second migration matrix implies an absence of migration. One can switch
between migration matrices at any time by means of historical events. Note that by default, the first
migration matrix is used at the current time and further back in time until a historical event changes
the active migration matrix.

HISTORICAL EVENTS

This section begins with a comment line and is followed by a line specifying the number of historical
events. Then, each historical event is defined on a different line. Each historical event is defined by 7
numbers

1) Number of generations t before present at which the historical event happened
2) Source deme (the first listed deme has index 0))
3) Sink deme
4) Expected proportion of migrants to move from source to sink. Note that this proportion is not

fixed, and that it also represents the probability for each lineage in the source deme to
migrate to the sink deme.

5) New size for the sink deme, relative to its size at generation t.
6) New growth rate for the sink deme
7) New migration matrix to be used further back in time.

In the following example, 2 historical events are defined.

//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
2 historical event
1000 0 0 0 1 0 1
10000 1 0 1 10 0 1

The first event occurred 1000 generation in the past, and just sets the active migration matrix to
matrix 1, whereas matrix 0 had been active until then.
The second event, which occurred 10,000 generations ago, states that all lineages present in deme
1 need to migrate to deme 0. At the same time, the size of deme 1 is increased by a factor 10 and
we still use migration matrix 1.
If no historical events are necessary in your simulations just set the number to zero, as

//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
0 historical event

Since version 2.5.2, it is possible to specify two additional historical events directives to fastsimcoal:
• nomig: if this keyword is added at the end of a historical event definition, migrations

between demes are suppressed until the end of the current coalescent simulation. If
next in line historical events were to specify the use of some new migration matrix, this
would be ignored by fastsimcoal.

• keep: if instead of a given value for a growth rate or a migration matrix one uses the
keyword keep, then the former values of these parameters will be used.

These directives are mostly useful in the context of parameter estimation (in .tpl files), when the
exact timing of a historical event is determined by some parameter, so that the exact sequence of

fsc26 manual

27

events is not known a priori. Note that nomig will prevail over keep for the migration matrix if
both directives are used for the same historical event.
Example of the use of the nomig directive:

//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
2 historical event
1000 0 0 0 1 0 0 nomig //This directives suppresses migrations between demes
10000 1 0 1 10 0 1 //there will be no migration between demes, even if some are
 specified in migration matrix 1

Example of the use of the keep directive:

//historical event: time, source, sink, migrants, new size, growth rate, migr. matrix
3 historical event
200 0 0 0 1 -0.001 0
1000 0 0 0 1 keep 1 //Keep current growth rate (-0.001) (and change migration matrix
10000 1 0 1 1 0 keep //Keep migration matrix 1 (plus fuse deme 1 with deme 0, and
 stop growth rate)

Since version 2.6, it is possible to implement instantaneous bottlenecks (for non-recombining data
only), happening in a single generation. This simplifies considerably the modeling of bottlenecks,
which previously required one to specify the bottleneck size and duration, which required the
definition of two historical events. In the new implementation, one only needs to specify the
bottleneck intensity, normally defined as / bott N , where t is the bottleneck duration and botN is the
bottleneck size. Here since t is arbitrarily set to 1, it implies that the bottleneck size is 1/intensity.
The new notation needs the keyword instbot at the end of the line, and to specify the bottleneck
intensity instead of the sink new size, as in

//hist event: time, source, sink, migrants, bot intensity, growth rate, migr. mat
1 historical event
1000 0 0 0 1 0 0 instbot

where the intensity is set to 1, which implies a very strong bottleneck. Note that even though the
duration of the bottleneck is of 1 generation, we set all coalescent events to happen exactly at the
time of this instantaneous bottleneck. So we may have multiple coalescent at the same time, but w
did not implement multiple mergers.
Note also that the size of the population after the bottleneck is assumed to be the same as before
the bottleneck. An extra historical event would be needed to change this size to something else, as
in

//hist event: time, source, sink, migs, bot intensity|new size, growth rate, migr mat
2 historical event
1000 0 0 0 1 0 0 instbot
1000 0 0 0 10 0 0

where, with the second historical event, the size of deme 0 is set at generation 1000 to something
10 times larger than it size before generation 1000. Note that the order of historical events is
preserved so that the bottleneck will be first implement and the resize will occur afterwards (going
backward in time).

fsc26 manual

28

GENETIC SETTINGS: CHROMOSOMES, BLOCKS, DATA TYPES, MUTATION, AND
RECOMBINATION

GENETIC SETTINGS SUBSECTIONS

The genetic information section has 3 subsections

1) The number of independent chromosomes to be simulated and a flag (0, 1) indicating if the
different chromosomes have a different (1) or a similar (0) structure. These chromosomes are
assumed to be completely unlinked. If the chromosomes have a different structure, the sub-
sections 29 and 3) need to be repeated for each chromosome structure.

2) The number of blocks to be simulated per chromosome. By block we mean segments of
chromosomes that may differ by the type of markers to be simulated, the recombination rate,
or the mutation rate. Two consecutive blocks may be of the same type but just differ by the
recombination rate, such as for instance simulate a recombination hot spot. Note that the
recombination rate between two blocks is that specified in the first block, which is thus valid
both within and between blocks.

3) The properties of genetic data to be simulated per block. In each block the following
properties need to be specified, in this order:
i) Data type: DNA, MICROSAT, SNP, or STANDARD
ii) Number of markers with this data type to be simulated. For DNA, this is the sequence

length.
iii) Recombination rate between adjacent markers (between adjacent nucleotides for DNA).
iv)-vii) Additional data type-specific properties, like the mutation rate per bp and the

transition bias for DNA (see list below).
In the example below, we define genetic data to be simulated in two different types of
chromosomes:

//Number of independent loci [chromosome]
2 1
//Per chromosome: Number of linkage blocks
2
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 1000 0 0.0000002 0.33
SNP 3 0 0
//Per chromosome: Number of linkage blocks
2
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
MICROSAT 3 0 0.0005 0 0
STANDARD 2 0 0.001

On the first type of chromosome we simulate a DNA sequence of 1000 bp and 3 SNPs. On the
second type of chromosome, we simulate 3 microsats under a pure stepwise mutation model and 2
multi-allelic loci under an infinite-allele model. On each chromosome, all markers are fully linked as
we do not assume any recombination.
In the next example, we want to simulate two chromosomes with the same structure, and we
indicate this with the 0 flag after the number of independent chromosomes to simulate.

//Number of independent loci [chromosome]
2 0
//Per chromosome: Number of linkage blocks

fsc26 manual

29

2
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 1000 0 0.0000002 0.33
SNP 3 0 0

Note that if a sequence of DNA is found monomorphic in a given population sample (due to a too
short tree or a too small mutation rate), a question mark '?' will be output for each individual
sequence.

SPECIFIC PARAMETERS FOR DIFFERENT DATA TYPES

The following optional parameters are required for the different types of markers.

 Extra parameters

Data types 4th parameter 5th parameter 6th parameter

DNA1 Mutation rate per bp Transition rate (fraction of
substitutions that are transitions).
A value of 0.33 implies no
transition bias.

MICROSAT Mutation rate per locus. Value of the geometric parameter
for a Generalized Stepwise
Mutation (GSM) model. This value
represents the proportion of
mutations that will change the
allele size by more than one step.
Values between 0 and 1 are
required.
A value of 0 is for a strict Stepwise
Mutation Model (SMM).

Range
constraint
(number of
different alleles
allowed).
A value of 0
means no range
constraint

SNP Minimum frequency for
the derived allele.
Note that if this minimum
frequency is not possible
given the simulated tree at
that locus, the derived
allele is coded as a 2
instead of a 1 in the output
file.

STANDARD Mutation rate per marker.
An infinite allele model is
assumed.

FREQ OUTEXP
Output of expected site
frequency spectrum for
estimated parameters of
the model

fsc26 manual

30

1 Note that by default, fsc26 uses a finite site model, implying that short DNA sequences simulated
with a high mutation rate can be the target of multiple hits. The command-line option -I ensures
that an infinite-site model is used.

A SPECIAL NOTE ON THE SIMULATION OF SNP DATA

Since ver 2.2.5, we can generate SNP data in different ways, depending on whether we define a
mutation rate and whether we use the -I option (infinite site option).
Normally, the mutation rate is irrelevant for generating SNP data, as one assumes that there is a
mutation having occurred somewhere on the coalescent tree, but this way of generating SNPs may
lead to biased SFS. For instance imagine that we want to generate SNPs in a population that
recently went through a bottleneck. In such a population, we expect that many coalescent events
will occur during the bottleneck if it is very severe. For some loci, the MRCA might even be located
during the bottleneck, and the tree will be very short at those loci. If mutation occur at random, it is
very unlikely that they will occur on such short trees. Rather they will occur at loci where the total
tree length is large, i.e. when some lineages went through the bottleneck. The relative proportion of
the short and long trees will depend on the particular parameter of the bottleneck, but if we ask
fastsimcoal to generate a SNP irrespective of the length of the tree, the SFS will be biased, as SNPs
in short trees will be over-represented.
In order to avoid this situation, we can now specify a mutation rate µ for the SNP. Assuming that at
each SNP position mutation occur according to a Poisson process with mean Tµ , where T is the
local total tree length, a SNP will be generated if a randomly drawn Poisson number is larger than or
equal to 1. We can thus now have the 4 possible situations:

1. 0µ = : same as fsc26, a mutation is implemented for each SNP, irrespective of total tree
length. The resulting SFS will potentially be biased.

2. 0µ > : A SNP will be generated if () 1x Poisson Tλ µ= ≥ . This should lead to unbiased SFS.

• If the option -I (infinite site model) is specified on the command line, x SNPs are
generated, otherwise, a single SNP is produced if 1x ≥ .

• If both options -I and -S are specified on the command line, then even monomorphic
sites are output in the arlequin file.

Note that the use of a large mutation rate could be considered as similar to the simulation of a short
DNA sequence. For instance if 810µ −= per bp, the use of a mutation rate of 610µ −= would
correspond to the simulation of a short (non-recombining) segment of 100 bp.

EXAMPLES:
1. 1 Mb DNA sequence with recombination rate of 81 10−× and mutation rate of 82 10−× , no

transition bias
DNA 1000000 1E-8 2E-8 0.33

2. 10 Kb DNA sequence without recombination and mutation rate of 62 10−× , high transition bias
DNA 10000 0 2E-6 0.95

3. 20 MICROSAT with recombination rate of 51 10−× between adjacent markers, a mutation rate of
45 10−× per marker, a geometric GSM parameter of 0.1, and a maximum allele size range of 30.

MICROSAT 20 0.00001 5E-4 0.1 30

fsc26 manual

31

Note that with such a high recombination rate, more than 1 recombination event can occur
between adjacent markers, which is adequately taken into account by our modified serial Markov
coalescent model (see the description of the SMC' below).

4. 10 SNP sites with variable recombination rates and a minimum derived allele frequency of 0.02.
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
10
//per Block: data type, num loci, rec. rate + optional parameters
SNP 1 0.00001 0.02
SNP 1 0.001 0.02
SNP 1 0.0002 0.02
SNP 1 0.01 0.02
SNP 1 0 0.02
SNP 1 0.00003 0.02
SNP 1 0.005 0.02
SNP 1 0.00001 0.02
SNP 1 0.002 0.02
SNP 1 0 0.02

With this example, one sees how to simulate SNPs located at fixed recombination distances
along a given chromosome segment. Like for MICROSAT before, multiple recombination event
between adjacent sites will be handled by our SMC' recombination approximation.

5. 20 STANDARD fully linked markers with a mutation rate of 65 10−× per marker.
STANDARD 20 0 0.000005

Note finally that a given chromosome can be simulated for different types of markers, e.g. with a
mixture of SNPs and MICROSAT markers:

//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
3
//per Block: data type, num loci, rec. rate + optional parameters
SNP 1 1E-6 0.01
MICROSAT 1 2E-7 5E-4 0 0
SNP 1 0 0.02

A RELATIVELY COMPLEX EXAMPLE WITH 3 POPULATIONS, SERIAL SAMPLING, BOTTLENECK,
AND INTROGRESSION
Let's assume we are interested in the following relatively complex demographic scenario involving 3
demes (populations).

fsc26 manual

32

This scenario assumes that genes from deme 2 were sampled 1500 generations ago, and that 5% of
the genes present in deme 1 2000 generations ago actually came from deme 2 (which implies an
introgression or admixture event). It also assumes that deme 1 originated from deme 0 2000 ago
and went through a bottleneck size of 200 (haploid) individuals during 20 generations before
recovering a size of 5000 (haploid) individuals. Finally deme 0 and deme 2 diverged 15000
generations ago from an ancestral population of size 30000, to form tow populations of size 20000
and 10000, respectively.
We can simulate the evolution of 6 10Mb DNA sequences for deme2, and 20 10Mb sequences in
both deme 0 and deme 1 under this scenario with the following parameter file 3popDNASFS.par:
3popDNASFS.par

//Number of population samples (demes)
3
//Population effective sizes (number of genes)
20000
5000
10000
//Sample sizes
20
20
6 1500
//Growth rates: negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr. matrix
4 historical event
2000 1 2 0.05 1 0 0
2980 1 1 0 0.04 0 0
3000 1 0 1 1 0 0
15000 0 2 1 3 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000000 0.00000001 0.00000002 0.33

Deme 0 Deme 1 Deme 2

fsc26 manual

33

6. SAMPLING PARAMETER VALUES FROM SOME PRIOR DISTRIBUTIONS OR RANGES

When used as the simulation program for ABC estimation, fsc26 has a built-in procedure to sample
parameters from prior distributions. The principle is very much the same as that implemented in
ABCToolBox (Wegmann et al. 2010), using a template file (*.tpl) where parameters to be sampled
are input as keyword, and an estimation file (*.est) where parameter distributions are fully
specified. Such a way to simulate data is invoked e.g. with the following command line arguments

fsc26 -t 1popDNArand.tpl -n10 -e 1popDNArand.est -E 1000

which tells fsc26 to use the template file 1popDNArand.tpl and the estimation 1popDNArand.est to
generate 10 simulations for each of the 1000 sets of randomly drawn parameter values.
Note that when fsc26 is used to estimate parameters from some observed SFS, the intervals defined
in the est files are not considered as priors but as search ranges.

TEMPLATE FILE

An example template file reads as follows:

1popDNArand.tpl

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
NPOP
//Sample sizes
10
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr.
matrix
1 historical event
TEXP 0 0 0 RESIZE 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000 0.00000 MUTRATE 0.33

As can be seen above, a template file has exactly the same structure as a parameter file, but some
keywords (NPOP, TEXP, RESIZE, and MUTRATE) are present instead of actual parameter values.

Those keywords will be substituted with actual parameter values by fsc26, if the distributions of
these parameters are found in the estimation file.

CAUTION

Keyword for parameter need to be a unique string of characters. By unique, we mean that a
keyword cannot be part of another keyword. Note also that fsc26 is not case sensitive, and
therefore NPOP and nPop are identical for fsc26. So, for instance, NPOP and NPOP1 are
incompatible as NPOP is included into NPOP1, and if NPOP is defined before NPOP1 in the est file,

fsc26 manual

34

the value of NPOP (say 100) will also be inserted into NPOP1, resulting of a value of 1001 for
NPOP1. Such problems are difficult to spot, and often go un-noticed and result in bad estimations. It
has been suggested by some users that parameter keywords could be ended by a “$” sign, which is
a good idea. In that case NPOP and NPOP1 would become NPOP$ and NPOP1$, which are now
compatible. Any other ending character (other than “\”) would be okay, as well.

ESTIMATION FILE

An estimation file matching the template file 1popDNArand.tpl would look as follows
1popDNArand.est

// Priors and rules file
// *********************

[PARAMETERS]
//#isInt? #name #dist. #min #max
//all N are in number of haploid individuals
1 NPOP logunif 100 100000 output bounded
1 TEXP logunif 100 5000 output
0 RESIZE logunif 1e-3 1000 output
0 MUTRATE unif 1e-7 1e-9 output

[RULES]

[COMPLEX PARAMETERS]

1 ANCSIZE = NPOP*RESIZE output
0 2N = 2*NPOP hide
0 THETA = 2N*MUTRATE output

The estimation file is divided in three main sections

1. The [PARAMETERS] section
2. The [RULES] section
3. The [COMPLEX PARAMETERS] section

PARAMETERS SECTION

The [PARAMETERS] section lists the prior distributions of simple parameters.
Each parameter can be an integer or a float, as specified by a first indicator variable.
Each parameter can either be uniformly or log-uniformly distributed between a minimum and a
maximum value that need to be specified.

RULES SECTION

The [RULES] section can include a set of conditions to be met among the simple parameters.
Rules are typically used to specify that a parameter need to be larger than another one, which could
be used for instance to specify that the divergence time between two populations must be larger
than the time of a bottleneck. The use of rules will of course modify the search ranges of the
parameters.

fsc26 manual

35

COMPLEX PARAMETERS SECTION

The [COMPLEX PARAMETERS] lists complex parameters that are obtained as simple operations
between any 2 simple or complex parameters or between a parameter and a scalar.
The following simple operations are possible between two parameters, or between a parameter
and a scalar:
 “+”, “-”, “*”, and "/"
Since ver. 2.5.2, the following functions are possible on a single parameter or on a scalar:
 log(), log10(), exp(), abs(), pow10()
Since ver. 2.5.2, the following functions are possible on a single parameter or between a parameter
and a scalar:
 %min%, %max%

ADDITIONAL SYNTAX

As seen in the example 1popDNArand.est above, comments can be included in the est file as
double slash, as in C++.

Simple or complex parameters can then be output or hidden in output files by using the keywords
"output" or "hide", respectively.

The %min% and %max% functions are a bit special here as they should be used like operators.

Example:

[PARAMETERS]

1 N1 100 100000 output

1 N2 100 100000 output

[COMPLEX PARAMETERS]

1 NMAX = N1 %max% N2 output

Since version 2.5.2, one can also specify that the range of a simple parameter is bounded (during
parameter estimation) by using the keyword "bounded" after keywords output or hide

Example:

[PARAMETERS]

0 MIGR_RATE 0 0.1 output bounded

This will prevent the MIGR_RATE parameter to grow beyond 0.1

REFERENCE PARAMETER DURING PARAMETER OPTIMIZATION

Since version 2.6, one can specify that a given parameter is a reference parameter, by adding the
“reference” keyword at the end of the line, as in

fsc26 manual

36

[PARAMETERS]

0 NANC 1e3 1e6 output bounded reference

This keyword will be used in conjunction of the –l xxx command line option, which specifies that
during xxx initial ECM cycles, both monomorphic and polymorphic sites will be used to compute the
likelihood. After these xxx initial cycles, the likelihood will only be computed (and maximized) based
on the polymorphic sites, using the currently estimated reference parameter as fixed, to scale all
other parameters. The choice of this (unique) reference parameter is thus important, and should be
one that affects the total number of polymorphic sites, like the size of an ancestral population, or a
divergence time.

PARAMETER RESCALING

At the end of the computations, a scaling parameters r defined as / ()obs totr S Tµ= is then computed

and output in the maxlhood result file. Here and obsS is the total number of polymorphic sites, and

totT is the estimated average total length of the genealogy under the maximum-likelihood parameter

values. This r parameter should then be used to rescale population sizes N and divergence times T
as rN and rT, and migration rates as m/r (such that Nm products remain unchanged). Note that
admixture rates should not be rescaled.

CAUTION

Equations of complex parameters should not include any variable that contain the name of a
function, i.e. log, log10, abs, pow10, min, or max (all in small caps). To avoid this problem, it might
be better to use capital letters for parameter names.
For instance the following complex parameter NPOP1 will be incorrectly estimated

0 Nlog = log(N2) output

1 NPOP1 = exp(Nlog) output //Wrong: Nlog conflicts with log function

But it will be correctly estimated in this case

0 NLOG = log(N2) output

1 NPOP1 = exp(NLOG) output

As already mentioned for tpl files, it might be good to use a special character at the end of a
parameter name, like a $ sign, as in

0 NPOP$ 10 100000 output

1 NPOP2$ 10 100000 output

In this way, the parameters NPOP$ and NPOP2$ are clearly different from each other

OUTPUT OF SAMPLED PARAMETERS

The sampled parameters are then output in a file having the same name as the template tpl file, but
with the .params extension. Typing the following command-line

fsc26 manual

37

fsc26 -t 1popDNArand.tpl -n 10 -e 1popDNArand.est -E10

will draw 10 sets of parameters according to the distributions found in file 1popDNArand.est. It will
then replace the corresponding keywords found in 1popDNArand.tpl by the values just drawn, and
write a .par file in the output directory as well as the randomly drawn values in the .params file,
which should look like:

./1popDNArand/1popDNArand.params

NPOP TEXP RESIZE MUTRATE ANCSIZE THETA
299 396 4.1771490 9.76393e-08 1248 5.83883e-05
202 561 28.9307465 9.35616e-09 5844 3.77989e-06
4311 1062 0.0630165 8.50824e-08 271 7.33581e-04
30824 580 0.0046161 7.65865e-08 142 0.0047214
669 188 46.5000659 7.59988e-08 31108 1.01686e-04
118 2132 63.0435917 9.61273e-08 7439 2.26861e-05
49854 722 28.3119282 2.93767e-08 1411462 0.0029291
45727 2870 2.7773714 3.18337e-08 127000 0.0029113
9719 575 15.5669955 6.23843e-08 151295 0.0012126
2021 888 0.0652933 1.12363e-08 131 4.54173e-05

Note that the complex parameter 2N was not output here as it was tagged has hidden in the .est
file.

Also, the command line “fsc26 -t 1popDNArand.tpl -n 10 -e 1popDNArand.est -E10” will generate a
total of 100 arp file (10 simulations for each of the 10 sets of randomly drawn parameters), to be
found in the directory ./1popDNArand.

USING PREDEFINED VALUES FOR A PARTICULAR EVOLUTIONARY MODEL

fsc26 allows you to simulate data under a given evolutionary scenario with fixed and predefined
values of the model parameters. This is an alternative to the generation of random parameter
values seen just above, and it uses pretty much the same syntax on the command line.
For instance,

fsc26 -t 1popDNArand.tpl -n 5 -f 1popDNA.def

will replace the keywords found in the tpl file by the values listed in the definition file
1popDNA.def , and it will perform five simulation for each set of defined values. Note that the tpl
file mentioned above was used in the previous section, and we show below the content and
structure of a definition file.

DEFINITION FILE
A def file needs to have a first header line listing the keywords associated to each parameter. The
keywords present in the template tpl file must all be listed in the def file, but there can be more
keywords listed in the def file than those listed in the tpl file. These additional parameters will
simply not be used.
The following lines then list the values of each parameter. For each parameter set, a par file will be
created by replacing the keywords in the tpl file by the corresponding parameter values. In the
example below, we list just 10 sets of parameter values.

fsc26 manual

38

1popDNA.def

NPOP TEXP RESIZE MUTRATE ANCSIZE THETA
299 396 4.1771490 9.76393e-08 1248 5.83883e-05
202 561 28.9307465 9.35616e-09 5844 3.77989e-06
4311 1062 0.0630165 8.50824e-08 271 7.33581e-04
30824 580 0.0046161 7.65865e-08 142 0.0047214
669 188 46.5000659 7.59988e-08 31108 1.01686e-04
118 2132 63.0435917 9.61273e-08 7439 2.26861e-05
49854 722 28.3119282 2.93767e-08 1411462 0.0029291
45727 2870 2.7773714 3.18337e-08 127000 0.0029113
9719 575 15.5669955 6.23843e-08 151295 0.0012126
2021 888 0.0652933 1.12363e-08 131 4.54173e-05

Note that this def file corresponds to the params file we had just generated from the est file in the
previous section.
The output files (par and arp files) will be placed in a directory with the same name as the tpl file
but without the .tpl extension.

fsc26 manual

39

7. ESTIMATING PARAMETERS FROM THE SITE FREQUENCY SPECTRUM

fsc26 implements a new way to estimate demographic parameters from the site frequency
spectrum (SFS) computed from DNA sequence data or from ascertained SNP chips (see
methodological section “Estimation of demographic parameters from the SFS”. In short, fsc26
simulates the expected SFS under a given set of parameters and computes their (composite)
likelihood. It uses a robust maximization procedure to find those parameters maximizing the
composite likelihood.

In order to do this, you need the following three input files:

1. A file or a series of files containing the observed (joint) SFS.
2. A template file (*.tpl, see Section on “Sampling parameter values from some prior

distributions”) specifying the evolutionary model to be studied, with a similar structure as
conventional fsc26 parameter (par) files. In this file, the parameters to be estimated are
simply replaced by keywords.

3. An estimation file (*.est, see chapter “Sampling parameter values from some prior
distributions”), which specifies the list of the search ranges for those parameters defined by
their keywords corresponding to those listed in the tpl file.

EXAMPLE OF THE ESTIMATION OF A BOTTLENECK DEMOGRAPHIC HISTORY

Let's have a look at a simple example, where we want to estimate the parameters of a model where
a population went through a recent bottleneck as shown in the figure below:

Note that more complex examples are provided in the Appendix section "Example files for the
estimation of demography from the (joint) SFS".

OBSERVED SFS

Assume that we have the following observed SFS collected from 20Mb of DNA

1PopBot20Mb_DAFpop0.obs

1 observations
d0_0 d0_1 d0_2 d0_3 d0_4 d0_5 d0_6 d0_7 d0_8 d0_9 d0_10 d0_11 d0_12 d0_13 d0_14 d0_15 d0_16 d0_17 d0_18 d0_19 d0_20
19960052 9331 3572 2530 2221 2059 1963 1952 1730 1682 1572 1520 1426 1453 1335 1179 1195 1069 1129 1030 0

fsc26 manual

40

TEMPLATE FILE

Let's now define the following template file that describes the demographic model and the
parameters of interests, which is similar to a par file, but where parameters are replaced by
keywords.

1PopBot20Mb.tpl

//Number of population samples (demes)
1
//Population effective sizes (number of genes)
NCUR
//Sample sizes
20
//Growth rates : negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr. matrix
2 historical event
TBOT 0 0 0 RESBOT 0 0
TENDBOT 0 0 0 RESENDBOT 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters

FREQ 1 0 2.5e-8

Here note the FREQ data type, telling fsc26 that we want to estimate site frequency spectra with
simulations.

ESTIMATION FILE

The search range of the different parameters to estimate are defined in the following est file:
1PopBot20Mb.est

// Priors and rules file
// *********************
[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
1 NCUR unif 10 100000 output
1 NANC unif 10 100000 output
1 NBOT unif 10 100000 output
1 TBOT unif 10 10000 output
[RULES]
[COMPLEX PARAMETERS]
0 RESBOT = NBOT/NCUR hide
0 RESENDBOT = NANC/NBOT hide
1 TENDBOT = TBOT+100 hide

IMPORTANT NOTES

Even though the syntax of these est files is the same than that used when Sampling parameter
values from prior distributions (see section on " Estimation file" above), some important differences
exist:

1. The parameter range and distributions are not priors but rather search ranges
2. The lower range limit is an absolute minimum, whereas the upper range is only used as a

maximum for choosing a random initial value for this parameter. There is actually no upper

fsc26 manual

41

limit to the search range, as this limit can grow by 30% after each cycle if we have reached
the predefined upper bound.

3. The rules in the [RULES] section are now checked during the estimation of the parameters,
contrary to what happened in fsc21.

COMMAND LINE

Then parameter estimation can be simply initiated by launching the following command line

./ fsc26 -t 1PopBot20Mb.tpl -n 100000 -d -e 1PopBot20Mb.est -M -L 40 -q

This command line tells fsc26 that the model is defined in the file 1PopBot20Mb.tpl (-t), that the
search range of the parameters to be estimated are in the file 1PopBot20Mb.est (-e), that (-n)
100,000 simulations need to be done to estimate the expected derived (-d) SFS, that (-L) 40 ECM
cycles, respectively, will be performed for estimating the parameters (-M), and that a minimum
console output (quiet mode -q) is required.
Since ver 2.5.2.8, it is possible to write the command line in a file called "fsc_run.txt". If this file is
present in the current working directory, and if fsc26 is launched without any argument, the
command line found in the file "fsc_run.txt" will be executed.
Note that command line notation for fsc26 has changed as compared to previous versions. The
main changes are:

• -M option is only need to specify that parameter estimation my Maximum likelihood needs
to be performed. It does not need any additional parameter.

• -l option is now optional. It used to specify a minimum number of cycles to be performed.
Now we do a fixed number of cycles specified with option -L. However, it can be specified in
connection with the use of the reference keyword in est files, such as to specify the number
of ECM cycles for which the likelihood of the model will be evaluated on both monomorphic
and polymorphic sites. In absence of this –l option, the likelihood is estimated on both
monomorphic and polymorphic sites unless the -0 option is used.

• -N option has been suppressed. It used to specify a maximum number of coalescent
simulations to perform to estimate the expected SFS. Now we use a fixed number of
simulations, simply specified by option -n.

RUNNING FASTSIMCOAL WITH OPTIONS SPECIFIED IN THE FILE "FSC_RUN.TXT"

It is possible to run fsc without command line option if the file "fsc_run.txt" is present and contains
run path and command line options in the current working directory. The file "fsc_run.txt" should
have just two lines.
The first line should have the path to the input files. The second line should have all command line
options
e.g.:
fsc_run.txt

D:\Users\Laurent\Dropbox\fastsimcoal\IM20Mb
-t IM20Mb.tpl -e IM20Mb.est -M -n100000 -L20 -c6 -d -q

fsc26 manual

42

OUTPUT FILES

The results are then output in a "<template_generic_name>.bestlhoods" file, containing the
estimated ML parameter values:

1PopExpInst20Mb.bestlhoods

NPOP NANC TEXP MaxEstLhood MaxObsLhood
502642 542 5070 -90349.486 -90348.375

In addition to estimated ML parameter values, the file reports the estimated log likelihood, as well
as the maximum log likelihood given the observed SFS (MaxObsLhood). MaxObsLhood is obtained
by using the observed SFS as the expected SFS when computing the likelihood.
fsc26 produces additional output files:

• "<template_generic_name>.brent_lhoods" containing the parameter values at different
stages of the optimization procedure, after each parameter update of the ECM cycles.

• "<template_generic_name>.last_lhoods" containing the parameter values obtained at the
last update of all ECM cycles (which might not be the ML parameter values).

• "<template_generic_name>_maxL.par", which is a par files where the estimated
parameters have been replaced by their ML values. This file can be directly used to generate
data sets corresponding to the estimated parameter values, for instance for parametric
bootstrap confidence interval estimation. In that case you need to replace the FREQ
keyword by DNA, to generate new SFS from the max lhood parameters.

• "<template_generic_name>.pv", which is a file containing the maximum likelihood
estimates of all simple parameters defined in the est file. This file can then be used to make
new parameter estimations with initial values of simple parameters equal to those specified
to those in the pv file instead of starting from random values (see option –initValues)

• A file or multiple files containing the expected (joint) SFS for the ML parameters. These files
have the same name as the *.obs files containing the observed SFS, but they have the *.txt
extension.

OBSERVED SFS FILE NAMES

Note that the name of the observed SFS file was not specified on the command line. This is
because it is assumed to have the same name as the prefix of the template file (here
1PopBot20Mb) and a given suffix, which exact definition depends on the number of population
samples and on the type of SFS.
Note also that all the observed SFS files should only contain a single observed SFS.

ONE OBSERVED SAMPLE

If there is a single observed sample in the model, the suffix will be:

-_DAFpop0.obs if it is a file listing the derived allele SFS (unfolded spectrum)
-_MAFpop0.obs if it is a file listing the minor allele SFS (folded spectrum)

TWO OBSERVED SAMPLES

fsc26 manual

43

If there are two observed samples in the model (0 and 1), one would need a file with the following
suffix

-_jointDAFpop1_0.obs if it is a file listing the derived allele SFS (unfolded spectrum)
-_jointMAFpop1_0.obs if it is a file listing the minor allele SFS (folded spectrum)

MORE THAN TWO OBSERVED SAMPLES

If there are more than two observed samples in the model (say 0, 1, and 2), one would need three
separate files with the following suffix

-_jointDAFpop1_0.obs, _jointDAFpop2_1.obs, _jointDAFpop2_0.obs
For the folded spectrum, the name would begin by _jointMAF

MULTIDIMENSIONAL SFS

It is also possible to tell fsc26 to use another format for observed SFS using the command line -
multiSFS. In that case, fsc26 expects the observed SFS to be in a single file, even when more than
one population sample is specified, with the following suffix:

- _DSFS.obs
See the Appendix section "Multidimensional site frequency spectrum" for the exact format of this
type of files.

ASCERTAINED SFS FILES

Obs files containing ascertained SFS have a suffix "-ascx.obs" instead of simply ".obs" a, where x is
the ascertainment panel size (i.e. x=2 for the Affymetrix Human Origins chip panels).

fsc26 manual

44

8. APPENDIX

COMMAND-LINE OPTIONS

As we have already seen, fsc26 include several command-line flags and options allowing you to
parameterize simulations. These options can be listed by simply typing

fsc26 or fsc26 -h

We detail the command line options in more detail below. You can use a one-letter (case sensitive)
shortcut after a single dash or a longer multi-letter full option after two dashes. The value required
after "some options can be separated or not from the option by a white space. For instance, "-n1"
and "-n 1" are both valid.

Short
cut
(-) Full (--) Description

-h --help Prints a list of all available options

-i --ifile Name of parameter file.
Example: -i 1popDNA.par

-n --numsims Number of simulations to perform per parameter file or sets of
parameter (see -e option)
Example: -n 1000

-t --tplfile test.tpl Name of template parameter file. The template file must have the
extension .tpl
Example: -t 1popDNArand.tpl

-f --dfile test.def Name of a parameter definition file. This file includes a list of sets
of parameter values to be substituted in the tpl file. Listed
parameter values are substituted in the template file to produce a
valid parameter file (.par). This is an alternative to the random
drawing of parameter values from distributions defined in the est
file.
Example: -f 1popDNArand.def

-F --dFile test.def Same as -f option, but only it only uses the simple parameters
defined in est file. Complex parameters are recomputed from the
simple parameters. Note that this option must be used together
with both the -t and the -e options. The est file is here necessary to
define the relationships between the simple parameters.
Example: -F 1popDNArand.def

-e --efile test.est Name of parameter prior definition file. Parameters are drawn
from specified distributions and then substituted into template
file. The file must have the extension .est . A template file must be
provided for this option to work.
Example: -e 1popDNArand.est

fsc26 manual

45

-E --numest Number of sets of parameters to draw from the prior distributions
defined in the est file. Parameter can be omitted for FREQ data
type.
Example: -e 1popDNArand.est -E 100

-g --genotypic Generates Arlequin projects outputs (*.arp) in genotypic (diploid)
format. Without this option, arp file are in the haploid format.

-p --phased Specifies that phase is known in Arlequin arp output files. Without
this options phase is assumed unknown.

-s --dnatosnp 2000 Output DNA as SNP data, with a given maximum number to output
(use 0 to output all SNPs in the DNA sequence(s)).

-S --allsites Output the whole DNA sequence, including all monomorphic sites.

-I --inf Generates DNA mutations according to an infinite site (IS)
mutation model. Under this model, each mutation is supposed to
occur at a different but random site on the DNA sequence. Under
the IS model, if different mutations are allocated to the same DNA
sequence position, they are generated independently, but marked
to have occurred at the same position in the Arlequin output arp
file.

-d --dsfs Computes the site frequency spectrum (SFS) for the derived alleles
for each population sample and for all pairs of samples (joint 2D
SFS). Note that this is only done on SNP or DNA data. If your input
file is about DNA sequences, then use the -s option to convert DNA
to SNP data.

-m --msfs Computes the site frequency spectrum (SFS) for the minor allele
for each population sample, for all pairs of samples (joint SFS), and
for all populations samples pooled (global SFS). Note that this is
only done on SNP data. If your input file is about DNA sequences,
then use the -s option to convert DNA to SNP data.

-j --jobs output one simulated or bootstrapped SFS per file
in a separate directory for easier analysis
(requires -d or -m and -s0 options)

-b --nonparboot 10 number of bootstraps to perform on polymorphic sites to extract
SFS (should be used in addition to -s0 and -j options)

-H --header Generates a header in the site frequency spectrum (SFS) files

-q --quiet Outputs minimal messages to the console instead of detailed
messages

-T --tree Output coalescent tree for each non-recombining segment in
nexus format. With recombination, a tree is output for each of the
segment between recombination breakpoints.

-k --keep 100000 Number of simulated polymorphic sites to keep in memory before
writing them to temporary files. If this option is not specified, a
default value of 200000 used. This option is mostly useful when
generating relatively long DNA sequences, with potentially tens of
thousands of polymorphic sites. In that case, extended k to a large
value will allow you to keep all genetic information in memory and
slightly speed up computations. Note that setting up this k value to
a very large number may imply prohibitive memory requirement
for fsc26, especially if you have large sample sizes i.e. thousands of
individuals). In that case, it is preferable to adjust k, to prevent
fsc26 to use all your computer memory. In general the default

fsc26 manual

46

value of k= 200000 gives very good results and does not need to be
changed. Note that larger values could be used when estimating
the DSFS or MSFS from large DNA sequence data.
Example: -k 10000

-r --seed Seed for random number generator (positive integer <= 1E6)

-x --noarloutput Does not generate Arlequin output files

-D --dadioutput Output SFS computed from DNA sequences in dadi format.

-M --maxlhood Perform parameter estimation by maximum composite likelihood
from the SFS

-L --numloops 20 Number of loops (ECM cycles) to be performed when estimating
parameters from SFS. Default is 20.
Example: -L 30

-l -- minnumloops 20 number of loops (ECM cycles) for which the lhood is
computed on both monomorphic and polymorphic sites.
Example: -l 10

-C --minSFSCount 1 Minimum observed SFS entry count taken into account for
parameter estimation (default = 1)")
Example: -C 5

-0 --removeZeroSFS Does not take into account monomorphic sites in observed SFS for
parameter inference. Parameters are estimated only from the SFS
and mutation rate is ignored. This option requires that one
parameter be fixed in the est file.

-a --ascDeme 0 Deme id where ascertainment is performed when simulating
ascertained SNPs. Do not use this option for simulating
unascertained SNP. Note that this ascertainment differs from that
based on minimum frequency when generating SNP. This
ascertainment applies specifically to DNA sequences.
Example: -a 0

-A --ascSize 2 Number of ascertained chromosomes used to validate SNPs.
Minimum value is 2. Default = 2.
Example: -A 2

-u --multiSFS Generates or use multidimensional SFS. It implies a different
format than when 1D or 2D SFS are used, even though this option
can also be used when modeling only 1 or 2 populations.

-w --brentol 0.01 Tolerance level for Brent optimization
Default = 0.01. Smaller value imply more precise estimations, but
require more computation time (min;max) = (1e-1;1e-5)

-c --cores 1 Number of openMP threads to be used for simulation of
independent chromosomes and for parameter estimation
(default=1, max=numBatches, use 0 to let openMP choose optimal
value). Note that this option is only active for 64 bit version of the
program.
Example: -c0

-B --numBatches 12 Maximum number of batches for multi-threaded runs (default=12).
For multithreaded runs, the simulations are divided into a specified
number of batches, each executed in a given thread. Best
performance is achieved when the number of batches is equal to

fsc26 manual

47

the number of cores available. Note that simulations and
estimation will be the same if different numbers of threads are
used with the same number of batches. Different results will be
obtained with the same seed for different no. of batches, even if
the same number of cores is used.
Example: -c4 -B4

-P --pooledsfs computes pooled SFS over all samples
Assumes -d or -m , but not -u (--multiSFS) flag activated

 --recordMRCA records tMRCAs for each non recombining segment and outputs
results in file <generic name>_mrca.txt. Beware: huge slow down
of computing time

 --foldedSFS computes the 1D and 2D MAF SFS by simply folding the DAF SFS.
This option makes folded spectra compatible with those estimated
by angsd.

 --logprecision 23 precision for computation of logs of random numbers. Default
value is 23 (full precision). Min value is 10 and max value is 23.
Recommended value is 18

 --nosingleton Ignores singletons in likelihood computation. This is especially
useful when one has low confidence in singletons, e.g. due to low
coverage. Note that only SNPs that are singletons overall samples
are ignored, not those that are singletons in a given population but
that are also present in other populations.

 --initValues my.pv specifies a file (*.pv) containing initial parameter values for
parameter estimation. This is especially useful to reduce the
number of runs necessary to estimate parameters when estimating
confidence intervals by bootstrap.

MULTITHREADING

New to fastsimcoal ver 2.5, multithreading is introduced via the use of openMP threads. This has
required considerable changes in most C++ classes to make them thread safe. It has also required
the introduction of a new thread-safe way to generate random numbers, so that simulations or
parameter estimations would give identical results independently of the number of threads used.
Multithreading has been implemented at two levels: when simulating multiple chromosome
segments and when estimating model parameters from the SFS. It is thus not implemented when
generating a single large recombining segment, as there is no way to split this simulation into
independent units. Due to openMP limitations, it is also not implemented in the windows 32bit
version.
In summary, a given workload is divided into a predefined number of batches that are processed by
independent threads, and results are then collected once all threads are finished. The default
number of batches is 12, and the default number of threads is 1. The number of threads can be
specified by the command line option -c, and the number of batches by the option -B.
In the figures below, we report the computing time of two tasks as a function of the number of
batches and of the number of threads used. Note that the computations were done on a quad core
system with hyperthreading activated, resulting in 8 potential independent threads visible to
win8.1.
The biggest observed computing gain is to pass from 1 to 2 threads, and then there is a clear
diminishing return in speed gain. The figures also show that the highest speed is obtained when the
number of batches is equal to the number of threads. In that case the highest performance should

fsc26 manual

48

be obtained when the number of threads is equal to the number of available cores (8 in our case),
but in practice we have a slightly better performance when using 6 threads and 12 batches (as the
same threads are each used twice). Actually, the best performance we obtained overall was when
using 8 cores and 16 batches (not shown). Note that you can use the option -c0 to let openMP
decide on the maximum number of cores to use if you do not know this for your machine. What is
also clear is that performance does not change much once the number of threads exceeds the
number of batches. In summary, the use of 6-8 threads on most modern desktops should give a
good performance increase.
When performing computations on a linux cluster, and admitting that one needs to replicate runs
from different starting points (min=50) to get the global maximum likelihood, then best
performance should be obtained by using a single thread and using one batch (-B1). As the speed
gain should be exactly equal to the number of available cores.
The bash file (fsc_threads_speed_test.sh) used to compare computing times is available in the
“example files” directory, and can be used on other systems to find best combinations of -c and -B
options

./$fsc25 -i 1PopDNAnoRec10Mb.par -n10 -I -x --seed 1234 - 10 simulations of 100,000 segments of 100 bp
Additional options: -c1 to -c12 and -B4 to -B12

fsc26 manual

49

./$fsc25 -t 1PopExpInst20Mb.tpl -e 1PopExpInst20Mb.est -d -M0.001 -n200000 -N200000 -I -l5 -L5 --seed 1234 -q

Additional options: -c1 to -c12 and -B4 to -B12

SEQUENTIAL MARKOV COALESCENT APPROXIMATION

In this section, we briefly describe the principle of the sequential Markov Coalescent model that is
used to approximate the classical ancestral recombination graph (ARG). For more details, please
read the original publications (McVean and Cardin 2005, Marjoram and Wall 2006, Chen et al.
2009).
In brief, McVean and Cardin (2005) proposed to approximate the coalescent with recombination
over a chromosomal segment based on the ARG by simulating a series of trees that differ each by
single recombination events, starting on the left of the segment and moving to the right of the
segment.
They thus proposed the following SMC algorithm to simulate coalescent with recombination along a
DNA segment of length L :

1) Simulate a normal coalescent tree without recombination on the left hand side of the
segment, and set 0x = . This initial tree has a total size of 0T T= generations.

2) Select the position of the next recombination event on the segment by drawing a random
number Exp()y rT , where Exp is an exponential distribution, and r is the recombination
rate per generation between adjacent base pairs.

3) If x y L+ < , select a position on the current tree where to implement a recombination event,
by drawing a uniform number in 1..T .

4) Detach the branch below the recombining event from the tree, and color in blue the branch
between the recombination event and the next interior node.

5) Erase the blue branch.
6) Let the recombining lineage coalesce with the other lineages attached to the tree, and thus

reattach the detached tree to the left tree.
7) Record the total length of the new tree 'T and set 'T T= .
8) Let x y+ =

fsc26 manual

50

9) Repeat steps 2)-8) until x y L+ ≥ .

The steps 3 to 6 of the SMC algorithm are illustrated below

Illustration of the SMC algorithm

A recombination
event occurs
on a tree

The (blue) branch
above the
recombination
event is erased

The recombining
lineage is free to
evolve backward in
time …

… until it
coalesces with
one of the lineage
on the left tree …

… potentially
changing the tree
topology and the
MRCA of the right
tree

Marjoram and Wall (2006) proposed a slight modification of the SMC algorithm consisting in
removing step 5 of the SMC algorithm above, and thus keeping the blue branch, and thus leaving
the possibility to the recombining lineage to coalesce with it. The blue branches are only erased at
the end of the simulation. This SMC’ algorithm has been shown to give patterns of linkage
disequilibrium more similar to those obtained by ms (Marjoram and Wall 2006), and it is therefore
this algorithm that is implemented in fsc26 .
With SMC’, the recombining lineage can indeed coalesce with the blue lineages, and thus lead to a
tree identical to the left tree, reflecting the fact that in the ancestral recombination graph,
coalescent event can also occur between unsampled lineages.

Illustration of the SMC’ algorithm

A recombination event

 occurs on a tree
The blue branch above the
recombination event is
kept

The recombining lineage is
free to evolve backward in
time, and can coalesce
with the blue branch …

… leading to a tree
identical to that on
the left.

SITE FREQUENCY SPECTRUM

fsc26 can generate the site frequency spectrum for the derived allele (the unfolded site frequency
spectrum) of the simulated data sets with the -s and -d command-line options as follows in the case
of the relatively complex 3-population scenario described above:

fsc26 manual

51

fsc26 -i 3PopDNASFS.par -x -s0 -d -n10 -q

The -s option is necessary, here because the SFS can only be computed on SNP data, and the -s
options tells fsc26 to treat DNA as SNP data (where the 0 allele is ancestral). Note that the -x option
is there to prevent the output of arlequin input files, which would be quite large in this case (about
2.8 Mb for each simulation, with >50,000 polymorphic sites).
fsc26 will then generate for each simulation, the population-specific derived site frequency
spectrum, all the pairwise joint frequency spectra.
For instance, the 10 SFS of deme 0 look like:
./3PopDNASFS/3PopDNASFS_DAFpop0.obs

10 observations
d0_0 d0_1 d0_2 d0_3 d0_4 d0_5 d0_6 d0_7 d0_8 d0_9 d0_10 d0_11 d0_12 d0_13 d0_14 d0_15 d0_16 d0_17 d0_18 d0_19 d0_20
9964672 8054 4046 3032 2190 2118 1548 1431 1358 1138 1096 1010 1020 845 688 803 673 743 668 614 2253
9964237 8407 4203 2833 2675 1904 1587 1443 1241 1093 1073 923 933 917 855 752 837 590 637 618 2242
9963855 8449 4104 3165 2700 2045 1662 1634 1267 1067 904 897 923 930 844 845 808 696 490 556 2159
9964355 8292 4251 3142 2248 1741 1552 1325 1359 1290 1147 1068 938 851 846 768 632 747 626 728 2094
9963918 8582 4285 3110 2391 2081 1506 1475 1279 1119 967 986 929 841 763 797 841 752 651 687 2040
9964418 8409 4483 2844 2241 1896 1580 1407 1307 1109 978 1015 857 821 720 777 697 599 654 647 2541
9965301 7894 4487 3061 2212 1719 1562 1384 1154 1059 962 992 800 799 785 673 715 664 700 571 2506
9963601 8491 4372 3120 2547 2090 1525 1450 1336 1164 1018 877 945 844 741 849 808 768 705 591 2158
9965241 7855 4273 2918 2294 1960 1503 1362 1103 1023 996 965 793 870 810 863 632 804 571 679 2485
9964845 8306 4674 2928 2205 1828 1519 1414 1142 1203 1062 1010 900 882 785 656 654 581 581 552 2273

Whereas this is the derived SFS, it has to be noted that the derived allele can have here a frequency
of 20/20 since we use here a finite site model allowing more than one mutation per site. So by
chance two mutations might have occurred in the two descending branches stemming from the
MRCA node and lead to the same derived allele, implying that the derived allele frequency will be
20. To prevent this, use the -I option that generates SNPs under an infinite site model. Note that
we also output here the SFS entry 0/0, which just lists the number of monomorphic sites in deme 0.
In the following table we show the first two simulated joint SFS between deme 0 and deme 2
./3PopDNASFS/3PopDNASFS_DAFpop0.obs

10 observations
 d0_0 d0_1 d0_2 d0_3 d0_4 d0_5 d0_6 d0_7 d0_8 d0_9 d0_10 d0_11 d0_12 d0_13 d0_14 d0_15 d0_16 d0_17 d0_18 d0_19 d0_20
d2_0 9952704 7659 3669 2686 1832 1709 1214 1048 960 811 729 689 689 537 389 453 403 386 317 285 1329
d2_1 3558 32 27 25 22 38 19 25 36 21 19 22 21 35 22 23 24 27 22 24 141
d2_2 2359 38 38 29 46 14 28 36 36 26 31 23 33 23 32 23 8 10 28 32 177
d2_3 1341 37 58 29 31 63 27 38 37 28 15 17 31 27 16 38 23 21 43 23 139
d2_4 1059 38 28 8 24 27 43 34 36 38 43 21 25 26 21 13 46 24 17 22 159
d2_5 830 26 15 29 19 33 34 33 28 16 12 19 16 17 12 16 16 15 13 25 171
d2_6 2821 224 211 226 216 234 183 217 225 198 247 219 205 180 196 237 153 260 228 203 137
d2_0 9951575 8022 3824 2506 2278 1569 1249 1100 911 788 696 572 573 525 483 389 404 316 353 287 1160
d2_1 4443 50 28 38 28 44 38 26 25 34 57 40 42 42 32 35 30 21 28 24 183
d2_2 2278 33 45 42 59 30 25 41 29 25 26 17 42 36 34 26 29 26 24 27 205
d2_3 1422 56 19 14 20 19 16 26 26 36 12 25 27 26 37 24 16 8 16 27 170
d2_4 1185 30 29 36 34 44 39 38 35 27 43 35 19 28 27 52 55 24 33 15 220
d2_5 926 30 44 37 41 33 18 39 42 34 65 23 44 35 26 25 21 31 23 25 217
d2_6 2408 186 214 160 215 165 202 173 173 149 174 211 186 225 216 201 282 164 160 213 87

The other SFS are then just listed below in the file ./3PopDNASFS/3PopDNASFS_DAFpop0.obs

Again, the SFS entries (n2,j) and (i,n0) are also listed here as some derived alleles can be fixed in
either or both populations if the defining mutation has occurred on some lineages leading
exclusively to genes sampled in the third population. Finally, note that SFS cannot be computed on
DNA sequences presenting more than a few 10s of thousand polymorphic sites, due to prohibitive
memory requirements, and the need to write temporary files with intermediate results on the
computer. But for the 3-population model defined above, this would imply the simulation of
sequences larger than about 200Mb. However, you can increase the number of polymorphic sites to
keep in memory with the -k command line option. If your computer has enough memory, then you
can probably generate and compute the SFS on a very large data set with >1 million SNPs.
It can be important to realize that the computation of SFS can perfectly be done on simulated data
obtained for random values of the parameters, with the use of tpl and est files, thus allowing one to
get the empirical distribution of SFS under a given model. These SFS could then be perfectly used as

fsc26 manual

52

summary statistics to estimate parameters from an observed SFS under an ABC framework or for
model choice (see below), but they can also be used to infer parameters via likelihood maximization
(as discussed below).

MINOR ALLELE SITE FREQUENCY SPECTRUM

Minor allele SFS for multiple populations have now a modified format. Whereas the Derived allele
SFS is straightforward to compute, the Minor allele SFS is not when several populations are
involved. The observed (and the expected) MAF SFS are now computed given the following rules.

a) The minor allele is identified after computing the global frequency of the two alleles over all
samples.

b) For each site where the minor allele frequency (MAF) is equal to the major allele frequency,
we cannot decide which allele is the minor allele, and thus, the observed SFS entry of each of
the two possible minor allele should be updated by 0.5.

The program angsd (Korneliussen et al. 2014) (available here) allows one to estimate the 1D, 2D and
higher dimension SFS from low coverage data. When estimating the folded spectrum for more than
1D SFS, it identifies the minor allele based on the used samples. So for instance, for different pairs
of populations the minor alleles of 2DSFS might be different at the same SNP position. This
contrasts with fastsimcoal, which assumes that the minor allele is identified globally, even when
estimating parameters from multiple pairs of 2D SFS. To ensure compatibility with angsd, we have
introduced in ver 2.6 the new command line --foldedSFS, which simply folds the derived (unfolded)
2D SFS for all pairs of populations.
For instance, assuming we want to generate data under the following scenario:
./3PopDNASFSsmall.par

//Number of population samples (demes)
3
//Population effective sizes (number of genes)
20000
5000
10000
//Sample sizes
2
3
6 1500
//Growth rates: negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr. matrix
4 historical event
2000 1 2 0.05 1 0 0
2980 1 1 0 0.04 0 0
3000 1 0 1 1 0 0
15000 0 2 1 3 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000000 0.00000001 0.00000002 0.33

The following command

fsc26 -i 3PopDNASFSsmall.par -x -s0 -m -n1 --seed 1234 -q

will lead to the three joint (2D) SFS

http://www.popgen.dk/angsd/index.php/ANGSD

fsc26 manual

53

./3PopDNASFSsmall/

3PopDNASFSsmall_jointMAFpop1_0.obs 3PopDNASFSsmall_jointMAFpop2_0.obs 3PopDNASFSsmall_jointMAFpop2_1.obs

1 observations
 d0_0 d0_1 d0_2
d1_0 9976100 6690 1715
d1_1 1816 807 470
d1_2 2153 922 791
d1_3 1977 1864 4695

1 observations
 d0_0 d0_1 d0_2
d2_0 9969578 9179 7181
d2_1 4999 408 235
d2_2 2712 316 127
d2_3 2111 185 128
d2_4 1420 195 0
d2_5 1226 0 0
d2_6 0 0 0

1 observations
 d1_0 d1_1 d1_2 d1_3
d2_0 9971883 2621 3282 8152
d2_1 4917 127 292 306
d2_2 2728 161 188 78
d2_3 2238 82 104 0
d2_4 1513 102 0 0
d2_5 1226 0 0 0
d2_6 0 0 0 0

whereas the command

fsc26 -i 3PopDNASFSsmall.par -x -s0 -m -n1 --seed 1234 -q --foldedSFS

will lead to the three joint (2D) SFS

./3PopDNASFSsmall/

3PopDNASFSsmall_jointMAFpop1_0.obs 3PopDNASFSsmall_jointMAFpop2_0.obs 3PopDNASFSsmall_jointMAFpop2_1.obs

1 observations
 d0_0 d0_1 d0_2
d1_0 9980795 8554 1794.5
d1_1 2607 873 0
d1_2 1794.5 0 0
d1_3 0 0 0

1 observations
 d0_0 d0_1 d0_2
d2_0 9969578 9179 7181
d2_1 4999 408 1461
d2_2 2712 511 292
d2_3 2239 185 0
d2_4 1255 0 0
d2_5 0 0 0
d2_6 0 0 0

1 observations
 d1_0 d1_1 d1_2 d1_3
d2_0 9971883 2621 3282 8152
d2_1 4917 127 292 259
d2_2 2728 161 132 0
d2_3 2238 259 0 0
d2_4 1232 0 0 0
d2_5 0 0 0 0
d2_6 0 0 0 0

which are simply 2D SFS folded independently

MULTIDIMENSIONAL SITE FREQUENCY SPECTRUM

With the option --multiSFS, you have the option to generate multidimensional site frequency
spectrum.
For example if you use the following par file
./3PopDNASFSsmall2.par

//Number of population samples (demes)
3
//Population effective sizes (number of genes)
20000
5000
10000
//Sample sizes
2
3
6 1500
//Growth rates: negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new size, new growth rate, migr. matrix
4 historical event
2000 1 2 0.05 1 0 0
2800 1 1 0 0.04 0 0
3000 1 0 1 1 0 0
15000 0 2 1 3 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of linkage blocks
1
//per Block: data type, num loci, rec. rate and mut rate + optional parameters
DNA 10000000 0.00000001 0.00000002 0.33

fsc26 manual

54

to produce multidimensional SFS with the following command line

fsc26 -i 3PopDNASFSsmall.par -x -s0 -d -n1 --multiSFS --seed 1234 -q

you will generate the following observed SFS
./3PopDNASFSsmall/3PopDNASFSsmall2_DSFS.obs

1 observations. No. of demes and sample sizes are on next line
3 2 3 6
9964343 4506 2046 1320 1154 873 3229 1872 50 30 15 29
41 190 982 22 17 20 20 36 179 1936 86 66
63 43 28 371 5506 68 54 73 91 110 618 350
16 22 15 31 7 92 415 13 26 7 19 16
74 1666 86 85 87 42 60 604 1184 41 48 53
55 94 294 286 23 3 4 7 17 58 298 19
12 2 14 14 97 2494 190 188 203 225 255 2

Note that the second line gives the number of populations and the sample sizes in each deme. Note
also that the whole 3D SFS is normally produced on a single line (line 3), but it was split here on 7
lines for better visualization.
The entries on the SFS above correspond to the number of sites having the following derived allele
frequencies
3rd line: (0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,0,4), (0,0,5), (0,0,6), (0,1,0), (0,1,1), (0,1,2), (0,1,3), (0,1,4)
4th line: (0,1,5), (0,1,6), (0,2,0), (0,2,1), (0,2,2), (0,2,3), (0,2,4), (0,2,5), (0,2,6), (0,3,0), (0,3,1), (0,3,2)
5th line: (0,3,3), (0,3,4), (0,3,5), (0,3,6), (1,0,0), (1,0,1), (1,0,2), (1,0,3), (1,0,4), (1,0,5), (1,0,6), (1,1,0)
…
9th line: (2,2,2), (2,2,3), (2,2,4), (2,2,5), (2,2,6), (2,3,0), (2,3,1), (2,3,2), (2,3,3), (2,3,4), (2,3,5), (2,3,6)
Note as well that the entries of the matrix are in the form (x0, x1, x2), where x0, x1, and x2 are the
derived allele frequencies in demes 0, 1, and 2, respectively. We thus start iterating allele
frequencies in demes 2, then in deme 1 and finally in deme 0, which might be counter-intuitive, but
this format has been used in dadi before, and we kept it for maintaining compatibility.
This single file captures all the possible allelic configurations in these three samples, which are only
marginalized in the 3 joint SFS that would be produced by the command

fsc26 -i 3PopDNASFSsmall.par -x -s0 -d -n1 -seed 1234 -q

which generates the three joint SFS files
./3PopDNASFSsmall/

3PopDNASFSsmall_jointDAFpop1_0.obs 3PopDNASFSsmall_jointDAFpop2_0.obs 3PopDNASFSsmall_jointDAFpop2_1.obs

1 observations
 d0_0 d0_1 d0_2
d1_0 9976936 6160 2036
d1_1 2866 644 519
d1_2 1435 650 618
d1_3 2409 2469 3258

1 observations
 d0_0 d0_1 d0_2
d2_0 9969356 7535 4048
d2_1 4210 218 299
d2_2 2435 157 307
d2_3 1735 247 325
d2_4 1162 149 354
d2_5 1106 226 465
d2_6 3642 1391 633

1 observations
 d1_0 d1_1 d1_2 d1_3
d2_0 9970975 2918 1926 5120
d2_1 4196 85 55 391
d2_2 2369 124 76 330
d2_3 1742 124 64 377
d2_4 1155 93 89 328
d2_5 1157 103 40 497
d2_6 3538 582 453 1093

Either multiple joint 2DSFS can be used as input for parameter inference from SFS, and not that the
resulting likelihood will differ according to the format we choose, as it will be computed in different
ways (see equations 4 and 7 below). The input file format is automatically adjusted with the
presence or absence of the --multiSFS option. Note however that when more than three
populations are used most of the entries of the multidimensional SFS are empty, which may cause

fsc26 manual

55

estimation problems due to imprecisions in the estimation the expected probabilities of these
entries. See section on parameter inference "Composite likelihoods".

GENERATING SFS IN SINGLE FILES

It is possible to ask fastsimcoal to put the computed SFS in separate directories, for later easier
analyses, for instance for the computation of bootstrap confidence intervals after some parameter
estimation. This is done with the -j option, which should be associated with the -m or -d and -s0
options
For instance, the command

./fss25 -i 1PopDNA.par -n10 -q -j -s0 -d

will generate 10 arp files, and will compute their associated derived allele SFS, and each SFS file will
be put in a different directory, for easier parallel analysis on a cluster later on.
The result 1PopDNA directory will look like:

and each subdiretory will contain a separate SFS file, like:

fsc26 manual

56

GENERATING NON-PARAMETRIC BOOTSTRAPED SFS

In addition to the generation of a given number of simulated SFS, it is possible to output, for each
generated SFS, a number of bootstrapped SFS, where polymorphic sites are drawn with
replacement from those obtained in the simulations.
This is obtained by using the -b option, like :

./fsc26 -i 1PopDNA.par -n1 -q -j -s0 -d -b9

In that case it will generate a single arp file, but 10 directories. The first directory "1PopDNA_1"
will contain the SFS computed on the original data, whereas the 9 others will contain the SFS
computed on the bootstrap data.

CAUTION AND USE OF BLOCK-BOOTSTRAP WITH REAL DATA
With real data, non-parametric bootstraps are usually obtained by resampling observed sites and
then recomputing the SFS. If you have some linkage disequilibrium in your data, then it might be a
good idea to implement a block-bootstrap strategy, where, instead of bootstrapping single sites,
you would be bootstrapping whole chromosome segments, which would include several sites at a
time. The size of the segments should be chosen such as that LD between endpoints would be
almost nil.

GENERATING PARAMETRIC BOOTSTRAPS SFS

I describe below how to generate parametric bootstraps to get confidence intervals after parameter
estimation.
As mentioned above, fsc creates a file with the extension *_maxL.par in the result folder. This par
file is created from the maximum likelihood parameters estimated during the optimization and
estimation procedure. This file shown below can be used to perform parametric bootstrap.

fsc26 manual

57

1PopExpInst20Mb_maxL.par

//Parameters for the coalescence simulation program : fsc26.exe
1 samples to simulate :
//Population effective sizes (number of genes)
505946
//Samples sizes and samples age
10
//Growth rates: negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new deme size, new growth rate,
migration matrix index
1 historical event
5079 0 0 0 1.03173066e-003 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous
loci
1
//per Block:data type, number of loci, per generation recombination and mutation rates and optional parameters
FREQ 1 0 2.5e-8 OUTEXP

This file needs to be modified to generate DNA sequence data (here 200,000 non-recombining
segments of 100 bp) as
1PopExpInst20Mb_boot.par

//Parameters for the coalescence simulation program : fsc26.exe
1 samples to simulate :
//Population effective sizes (number of genes)
505946
//Samples sizes and samples age
10
//Growth rates: negative growth implies population expansion
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new deme size, new growth rate,
migration matrix index
1 historical event
5079 0 0 0 1.03173066e-003 0 0
//Number of independent loci [chromosome]
200000 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous
loci
1
//per Block:data type, number of loci, per generation recombination and mutation rates and optional parameters
DNA 100 0 2.5e-8 OUTEXP

Then running the following command

./fsc26 -i 1PopExpInst20Mb_boot.par -n2 -j -d -s0 -x –I -q

will generate 2 SFS in two separate subdirectories in the result directory 1PopExpInst20Mb_boot

fsc26 manual

58

With this procedure one can easily generate more than 2 SFS for these sets of parameters (say 100)
and then estimate parameters from these pseudo-observed data sets using the same tpl and est
files as those used to get the *_maxL.par file.

SPECIFYING INITIAL VALUES FOR BOOTSTRAP PARAMETER ESTIMATIONS
Since one would assume that estimated values obtained from data sets generated by parametric or
non-parametric procedures should be close to those initially estimated, one could start parameter
estimation from those values. Since version 2.6, this is now possible by using the command line
option -initvalues followed by the name of a file (with extension .pv usually) that lists the initial
values of all simple parameters that are defined in an .est file.
So after the initial estimation of the parameters of a model using original data, e.g. based on the
following est file

1PopExpInst20Mb.est

// Search ranges and rules file
// ****************************

[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
1 NPOP logunif 1000 1e7 output
1 NANC logunif 10 1e5 output
1 TEXP unif 10 1e5 output

[RULES]

[COMPLEX PARAMETERS]

0 RESIZE = NANC/NPOP hide

fsc26 manual

59

fsc26 produces a file with the extension .pv, which contains all the values of the simple parameters
that were just estimated
1PopExpInst20Mb.pv

NPOP NANC TEXP
500764 522 5044

This file can then be used when estimating parameter from a bootstrap file uder the same model
using the command line option -initvalues as e.g.

./fsc26 -t 1PopExpInst20Mb_boot.tpl -e 1PopExpInst20Mb_boot.est -n100000 -d -M
-L30 –initvalues 1PopExpInst20Mb.pv -c8 -B8 -q

EXTENSION OF THE SMC’ ALGORITHM TO MULTIPLE RECOMBINATION EVENTS

In order to simulate markers located at fixed recombination distances on the chromosome, we have
extended the SMC’ algorithm to allow for multiple recombination events between these markers.
The new algorithm is as follows:

1) Simulate a normal coalescent tree without recombination on the left marker. This initial tree
has a total size of 0T T= generations.

2) Draw the number z of recombination events to occur between the two markers distant of r
recombination units as Poisson ()z rTλ = .

3) Draw z random numbers uniformly distributed between 1 and T to locate the positions of the z
recombination events on the tree.

4) Locate the position of the most recent recombination event, and color in blue the branch
above this event. All recombination events occurring on a blue branch are temporarily
deactivated.

5) Detach the recombination event, and let it evolve until the time of the next active
recombination event.

6) If the recombining lineage coalesces with a blue lineage, the lineage is colored back in red and
the recombination events above this coalescent event become active again.

7) The next active recombination event is implemented, and we have a new recombining lineage
free to evolve and to coalesce either with lineages on the tree or with other detached
recombining lineages.

8) Steps 6-7 are repeated until only one lineage remains.
9) Remove all remaining blue lineages to keep a fully red tree.

This algorithm is illustrated below

fsc26 manual

60

The z recombination
events are randomly
positioned on the tree

The first recombinant
lineage is detached and
evolves freely backward
in time

The recombination
event on blue branches
are deactivated
(grayed)

Two recombinant
lineages can coalesce

A recombinant lineage
coalesces with a blue
branch, which
reactivates the
recombination events
above it.

The final coalescent
event is reached.

All blue branches are
erased to produce the
final tree for the right
marker.

The shared lineages
between the two trees
are shown in yellow.

INTEGRATION INTO APPROXIMATE BAYESIAN COMPUTATIONS (ABC)

fsc26 can easily be integrated into an ABC framework (see e.g. Beaumont et al. 2002, Csillery et al.
2010), using for instance the ABCToolBox framework (Wegmann et al. 2010), which was specially
developed to handle simcoal2, and which should be therefore able to accommodate fsc26 without
modification.
ABCToolBox is available on http://cmpg.unibe.ch/software/abctoolbox/ and its manual on
http://cmpg.unibe.ch/software/abctoolbox/ABCtoolbox_manual.pdf.
An alternative, would be to use fsc26 built-in parameter sampler to generate params files and
Arlequin arp files , which could then be processed by arlsumstat (available on
http://cmpg.unibe.ch/software/arlequin35/) to produce summary statistics. A file combining these
parameters and their associated summary statistics could then be used for ABC estimation, using
different software, like

• ABCest3 (http://cmpg.unibe.ch/software/ABC/) made by L. Excoffier
• ABCReg (Thornton 2009) http://www.molpopgen.org/software.html
• ABCEstimator in ABCToolBox (Wegmann et al. 2010)

http://cmpg.unibe.ch/software/abctoolbox/

http://cmpg.unibe.ch/software/abctoolbox/
http://cmpg.unibe.ch/software/abctoolbox/ABCtoolbox_manual.pdf
http://cmpg.unibe.ch/software/arlequin35/
http://cmpg.unibe.ch/software/ABC/
http://www.molpopgen.org/software.html
http://cmpg.unibe.ch/software/abctoolbox/

fsc26 manual

61

As mentioned above, an alternative use of fsc26 is to use the site frequency spectrum to estimate
parameters, which is explained in the next section

ESTIMATION OF DEMOGRAPHIC PARAMETERS FROM THE SFS VIA LIKELIHOOD MAXIMIZATION

We provide below some theoretical foundations for the estimation of demographic parameters
from observed (joint) SFS. See Excoffier et al. (2013) for more details.

SIMULATION-BASED LIKELIHOODS

Nielsen (2000)has shown that one could estimate the likelihood of a demographic model (),L X θ ,
where X is the site frequency spectrum, on the basis of coalescent simulations. This is because the
probability ip of a given derived allele frequency i is simply a ratio of branch lengths of the
coalescent tree expected under model θ as (Nielsen 2000):

(|) / (|)i ip E t E Tθ θ= , (1)

where it is the total length of a set { }i ijB b= of branches directly leading to i terminal nodes, and T

is the total tree length. This probability can then be estimated with arbitrary precision on the basis
of Z simulations as

ˆ
i

Z Z

i ijk k
k j B k

p b T
∈

=∑∑ ∑ . (2)

where ijkb is the length of the j-th compatible branch in simulation k (see Figure below). Note that
the estimator shown in eq. 2 implicitly weights simulations according to the probability that a
mutation occurs on the simulated tree. This approach is appropriate for analyzing SNPs extracted
from DNA sequence data as it is unlikely that SNPs will occur in genomic regions with shallow trees.
Note that an estimator of the form ˆ /

i

Z
i ijk kk j B

p b T
∈

=∑ ∑

(as used by Garrigan (2009) to estimate

the expected SFS) would give each tree the same weight and would thus give an excessive weight to
genomic regions with shallow coalescent trees, which can be a problem for recently bottlenecked
populations. If some simulated entries of the SFS were zero (because 0

i

Z
ijkk j B

b
∈

=∑ ∑), ˆ ip was set

to an arbitrarily small values (as in Garrigan 2009) chosen here as ˆ ˆmin(| 0) /100j jp p > .

fsc26 manual

62

COMPOSITE LIKELIHOODS

Probabilities inferred from the simulations and eq. (2)can then be used to compute the composite
likelihood of a given model as (Adams and Hudson 2004)

1

0 0
1

ˆPr(|) (1) i

n
mL S S

i
i

CL X P P pθ
−

−

=

= ∝ − ∏ . (3)

where { }1 1,..., nX m m −= is the SFS in a single population sample of size n, S is the number of

polymorphic sites, L is the length of the studied sequence, and 0P is the probability of no mutation

on the tree, obtained as 0
TP e µ−= assuming a Poisson distribution of mutations occurring at rate

µ .

This formulation can be extended for the joint SFS of two populations as
1 2

12 0 0
0 0

ˆ(1) ij

n n
mL S S

ij
i j

CL P P p−

= =

∝ − ∏∏ , (4)

and one can define a v-dimensional SFS for more than two (v) populations as
1 2

1 2

1... 0 0 ˆ(1)
v

v

n n n
mL S S

v
i i i

CL P P p Φ−
Φ∝ − ∏∏ ∏ (5)

where 1 2 1v vi i i i−Φ =  is a composite index. However, when the number of populations in the

model is larger than 2 and samples sizes are relatively large, the number of entries in the v-
dimensional SFS can be huge, implying that most entries of the observed SFS will be either zero or a
very small number and that the expected values for these low-count entries will be difficult to
estimate precisely. In that case, we have chosen to estimate the v-dimensional 1...vCL by collapsing

all entries with observed SFS less than a predefined threshold ε as

1... 0 0

1

1
ˆ ˆ(1) i

j

mL S S
v i j

ji

m
obsSFS j

obsSFSobsSFS
CL P P p p

ε

εε

−
< <

< <≥

  
 ∝ −      

∑
∑∏ . (6)

When v>4, this approach will also prove computationally difficult, and in that case we have chosen
to compute a composite composite-likelihood (C2L) obtained by multiplying all pairwise CL’s, as

1...
2

v ij
i j

C L CL
<

∝∏ , (7)

where ijCL is given by eq. (4).

MAXIMIZING THE LIKELIHOOD

As the likelihood is obtained by simulations, which incurs some approximation, we cannot use
optimization methods based on partial derivatives. Even though other methods would be possible,
we have chosen to use a conditional maximization algorithm (ECM, Meng and Rubin 1993), which is
an extension of the EM algorithm where each parameter of the model is maximized in turn, keeping

fsc26 manual

63

the other parameters at their last estimated value. The maximization of each parameter was done
using Brent’s (1973, Chapter 5) algorithm, which is a root-finding algorithm using a combination of
bisection, secant and inverse quadratic interpolation (see e.g. Press et al. 2007). We start with initial
random parameter values, and perform a series of ECM optimization cycles until estimated values
stabilize or until we have reached a specified maximum number of ECM cycles (usually 20-40). We
advise the use of at least 100,000 coalescent simulations for the estimation of the expected SFS for
a given set of demographic parameters.

ESTIMATING DEMOGRAPHIC PARAMETERS FROM SNPS WITH KNOWN ASCERTAINMENT

Recently, Affymetrix developed a new SNP array including ~629,000 SNPs with known
ascertainment scheme for population inference (Axiom® Genome-Wide Human Origins 1 Array,
http://www.affymetrix.com/support/technical/byproduct.affx?product=Axiom_GW_HuOrigin) (Lu
et al. 2011). This array, abbreviated hereafter GWHO, is made up of SNPs defined in 13 discovery
panels. In the first 12 panels, SNPs have been identified by comparing the two chromosomes of an
individual from a known population, further quality checks and validation on a large population
sample (Lu et al. 2011). The 13th panel contains SNPs that are polymorphic when comparing the
Denisovan sequence and a random San chromosome. Raw genotypes from 943 unrelated
individuals from more than 50 worldwide populations are freely available on
ftp://ftp.cephb.fr/hgdp_supp10/.

The ascertainment scheme of this array is simple and homogeneous over a given panel. However,
the SFS inferred from this array is biased as only mutations that occur in the ancestry of the two
compared chromosomes will be considered (see Figure above). Nielsen et al. (2004) have shown
how to correct the expected SFS within a given population under such a simple ascertainment
scheme. One could thus be tempted to use their method to unbias the SFS, and then use this
unbiased SFS for parameter inference, but this correction method will not work for joint SFS
inferred in more than one population. Thus, rather than unbiasing the SFS, we have chosen to infer
demographic parameters directly from the ascertained (joint) SFS. It implies we need to model the
ascertainment scheme in the coalescent simulations such as to infer the expected ascertained SFS
for a given demography. In order to estimate the SFS when SNPs are defined as being sites
heterozygous in a given individual, we use the following procedure: 1) we perform conventional
coalescent simulations under a given demography, 2) we choose two lineages at random in the
ascertained population, 3) we identify the subtree relating the chosen lineages to their most recent

ftp://ftp.cephb.fr/hgdp_supp10/

fsc26 manual

64

common ancestor (MRCA) (highlighted in blue in Figure above), 4) we update the numerator in eq.
(2) by summing up branch lengths of the blue subtree that are ancestral to i1 lineages in population
1, i2 lineages in population 2, …, iv lineages in population v, 5) The denominator of eq. (2) is updated
by summing up the total length of the blue subtree. Parameter optimization is then performed
similarly to the unascertained case.

RUNNING FSC26 ON A CLUSTER

For faster computations fsc26 can be launched on a Linux cluster.

SIMULATION OF GENETIC DIVERSITY

As an example, the following bash file fs_scratch.sh can be submitted on a cluster running
the freely available Sun Grid Engine (SGE, http://gridengine.sunsource.net/).

fs_scratch.sh

#!/bin/bash

#get local directory
directory=`pwd`

#$ -cwd
specify resources needed
#$ -l h_cpu=48:00:00
using a scratch directory, reserving disk space and enough files for simulations
#$ -l scratch=1,scratch_size=100M,scratch_files=5k
#$ -N fs_run
#$ -o fs.out
#$ -e fs.err
#$ -m a
#$ -q all.q

#Copying all files to scratch directory
cp * $TMP
cd $TMP

#Running fsc26
./ fsc26 -t 1PopDNArand.tpl -n 1 -e 1PopDNArand.est -E 1000 -q

#copying results from scratch to original directory
cp * $directory
cd $directory

The simple qsub command can be used to launch this bash file on a queue as

qsub fs_scratch.sh

Note that in fs_scratch.sh, fsc26 is using a scratch directory to write its output. This scratch
directory is a temporary directory created by SGE on the node's hard disk, so that fsc26 does not
use the net to transfer files from the node to the master during simulations, which usually increases
speed.
To use the scratch file, one needs to specify how much RAM is needed on the disk (scratch_size),
and how many files will be created (scratch_files). These parameters need to be carefully adjusted.
Very long DNA sequences may require several Gb per simulations! Also keep in mind that when
using tpl and est files, (-n × -E) arp files will be created (1 × 1000 in fs_scratch.sh), as well as -E

http://gridengine.sunsource.net/

fsc26 manual

65

par files, and -E arb files. In addition, when very long DNA sequences are generated, with many
polymorphic sites, fsc26 creates temporary files in a ./garbage directory, which is then deleted after
the arp file has been written. In the garbage directory, fsc26 will create as many files as the total
number of sampled genes (sum of sample sizes) defined in the par or the tpl file.
Finally, do not forget to make fsc26 and your bash file executable on your Linux cluster. This is
usually done with the chmod command as

chmod +x fsc26
chmod +x fs_scratch.sh

The use of a scratch is not compulsory and a simpler bash file without use of a scratch directory
would simply look like:
fs.sh

#!/bin/bash
#$ -cwd
specify resources needed
#$ -l h_cpu=48:00:00
#$ -N fs_run
#$ -o fs.out
#$ -e fs.err
#$ -m a
#$ -q all.q

#Running fsc26
./ fsc26 -t 1PopDNArand.tpl -n 1 -e 1PopDNArand.est -E 1000 -q

Note that a bash file can be created on the fly and qsubmitted from within another bash file. Here is
an example, which will submit 10 instances of fs.h on 10 different nodes, each one making 1000
simulations from different random parameter values .

./launch_fs.sh 10 1PopDNArand 10 1

launch_fs.sh

#!/bin/bash

#Laurent Excoffier December 2010

The script will launch several instances of fsc26

#Creating a shortcut for fsc26
fs= fsc26

if [$# -ne 4]; then
 echo "Expecting the following values on the command line, in that order"
 echo " Number of instances to run"
 echo " Generic name of template file"
 echo " Number of random parameter to draw"
 echo " Number of simulations per sets of parameter values"
else
 #Using values from the command line
 numInstances=$1
 genericName=$2
 numEstimates=$3
 numSimsPerEst=$4
 echo "numInstances=$numInstances"
 echo "genericName=$genericName"
 echo "numEstimates=$numEstimates"
 echo "numSimsPerEst=$numSimsPerEst"
fi

#Directory for job console outputs
msgs=consoleOutputs
mkdir $msgs 2>/dev/null

echo "Launching ${numInstances} instances of $fs"
let COUNT=numInstances
instancesLaunched=0

fsc26 manual

66

while [$COUNT -gt 0]; do
 curInst=fs_job${COUNT}.sh
 newDir=${genericName}_res${COUNT}
 mkdir ${newDir} 2>/dev/null
 cp ./$fs ${newDir}/.
 cp ./${genericName}.est ${newDir}/.
 cp ./${genericName}.tpl ${newDir}/.
 cp ./$fs ${newDir}/.
 cd ${newDir}
 let instancesLaunched=instancesLaunched+1
 if [-e ./$fs] ; then
 (
 echo "#!/bin/bash"
 echo "#$ -cwd"
 echo "# specify resources needed"
 echo "#$ -l h_cpu=48:00:00"
 echo "#$ -N fs${COUNT}_run"
 echo "#$ -o ../$msgs/fs${COUNT}.out"
 echo "#$ -e ../$msgs/fs${COUNT}.err"
 echo "#$ -m a"
 echo "#$ -q all.q"
 echo ""
 echo "chmod +x ./$fs"
 echo "./$fs -t ${genericName}.tpl -n${numSimsPerEst} -e ${genericName}.est -E${numEstimates} -q"
 echo "rm ./$fs"
) > $curInst
 chmod +x $curInst
 qsub ${curInst}
 else
 echo "File $fs not found. Aborting instance $instancesLaunched"
 fi
 cd ..
 let COUNT=COUNT-1
done

ESTIMATION OF DEMOGRAPHIC PARAMETERS FROM THE SFS

Since the estimation of demographic parameters from the (joint) SFS requires the maximization of
the likelihood of a model, it is necessary to repeat this estimation process several times and to get
the global maximum likelihood solution. This is best done by launching several estimations from the
same data set on a cluster.
The following bash file does just that, assuming that the observed data (*.obs files) are in a
directory called 1PopBot20Mb
It will launch 50 instances of fsc26 in 50 different directories (run1 to run50).
This bash file is pretty generic and could be easily modified for any other demographic model, as
well as for estimations from ascertainment SNP chip (if with Ascertainment=1)
Again it assumes that there the Sun Grid Engine running on a cluster, and that there is a queue
called "all.q" where jobs are going to be submitted.

launchFastSimCoal_1PopBot20Mb.sh

#!/bin/bash

#Laurent Excoffier February 2013

The script will launch several jobs of fsc26 to estimate
demographic parameters from the SFS, using a each time using a
conditional maximization (ECM) of the parameter likelihood
This should run on any kind of SFS files generated by fsc26

It assumes the following structure of the observed sfs files:
scriptDir
|
|- - - *.est file
|- - - *.tpl file
|- - - fsc26
|- - - targetDir
|
- *.obs files

fsc26 manual

67

fsc= fsc26
jobcount=0
msgs=conOutputs

#-------- Number of different runs per data set ------
numRuns=50
runBase=1
#-----------------------------

mkdir $msgs 2>/dev/null

#-------- Default run values ------
numSims=100000 #-n command line option
numCycles=40 #-L command line option
minValidSFSEntry=1 #-C command line option

#-------- Ascertainment ------
withAscertainment=0
ascPop=0 #-a command line option
ascSize=2 #-A command line option
#-----------------------------
useMonoSites=""
#useMonoSites="-0" #-0 command line option
#----------multiSF------------
multiSFS=""
#multiSFS="--multiSFS" #--multiSFS command line option
#-----------------------------

#-------- Generic Name ------
genericName=1PopBot20Mb
tplGenericName=1PopBot20Mb
estGenericName=1PopBot20Mb
#-----------------------------

for dirs in $genericName
do
 #Check that dirs is a directory
 if [-d "$dirs"]; then
 cd $dirs
 echo "Main directory : $dirs"
 estFile=$estGenericName.est
 tplFile=$tplGenericName.tpl
 for ((runsDone=$runBase; runsDone<=$numRuns; runsDone++))
 do
 runDir="run$runsDone"
 mkdir $runDir 2>/dev/null
 echo "--"
 echo ""
 echo "Currrent file: $subDirs $runDir"
 echo ""
 cd $runDir
 #Copying necessary files
 cp ../../$fsc .
 cp ../../$tplFile .
 cp ../../$estFile .
 cp ../*.obs .
 #Renaming files for consistency
 mv $tplFile ${genericName}.tpl
 mv $estFile ${genericName}.est
 let jobcount=jobcount+1
 jobName=${genericName}${jobcount}.sh
 #Creating bash file on the fly
 (
 echo "#!/bin/bash"
 echo ""
 echo "#$ -cwd"
 echo ""
 echo "# specify resources needed"
 echo "#$ -l h_cpu=500:00:00"
 echo ""
 echo "#$ -N j1P_${jobcount}"
 echo "#$ -o ../../../$msgs/1P_$runsDone.out"
 echo "#$ -e ../../../$msgs/1P_$runsDone.err"
 echo "#$ -m a"
 echo "#$ -q all.q"
 echo ""
 echo "#chmod +x ./$fsc"
 echo ""
 echo "#Computing likelihood of the parameters using the ECM-Brent algorithm"
 echo "echo \"\""
 if [$withAscertainment -eq 1] ; then
 echo "./$fsc -t ${genericName}.tpl -n $numSims -d -e
 ${genericName}.est -M $stopCrit -L $numCycles
 -a${ascPop} -A${ascSize} -q ${useMonoSites} ${multiSFS}"

fsc26 manual

68

 else
 echo "./$fsc -t ${genericName}.tpl -n $numSims -d -e
 ${genericName}.est -M $stopCrit -L $numCycles -q
 ${useMonoSites} ${multiSFS}"
 fi
 echo ""
 echo "echo \"\""
 echo "rm ./$fsc"
 echo "echo \"Job $jobcount terminated\""
) > $jobName
 chmod +x $jobName
 echo "Bash file $jobName created"
 qsub ./${jobName}
 #./${jobName}
 cd .. #$runDir
 done
 cd .. #dirs
 fi
done

COMPARATIVE SPEED TESTS: FASTSIMCOAL VS. MS AND MACS

We report below speed tests comparing fastsimcoal to ms and MaCS running all on a Linux cluster
made up of 2.6GHz AMD Opterons with 4 GB of RAM and 74 GB HD.

DATA SETS

The following test data sets were used in our comparisons.

No. of

populations

Diploid
population

size

Migration
rate

(gen-1)

Mutation
rate

(gen-1 × bp-1)

Recombination
rate

(gen-1 × bp-1)

Sample size per
population

(no. of genes)
1popNoRec 1 12500 2×10-8 0 2000
1popSmallSample 1 12500 2×10-8 1.2×10-8 20
1popLargeSample 1 12500 2×10-8 1.2×10-8 2000
2popNoRec 2 6250 0.001 2×10-8 0 1000
2popSmallSample 2 6250 0.001 2×10-8 1.2×10-8 10
2popLargeSample 2 6250 0.001 2×10-8 1.2×10-8 1000

The population, mutation and recombination parameters correspond to those used by Chen et al.
(2009), in their comparison of ms to MaCS in the one population case.

RESULTS

n=2000, no recombination (CPU times in seconds)

Data set No. of
replicates

Sequence
length

Program
ms MaCS fastsimcoal

1popNoRec
1000 1 Mb 1.1 11.1 9.5

100 10 Mb 9.6 107.0 72.9
100 100 Mb 147.9 1319.5 1038.1

2popNoRec
1000 1 Mb 1.2 12.5 9.3

100 10 Mb 8.9 128.1 71.5
100 100 Mb 161.2 1513.2 1099.9

Without recombination, ms is much faster than the two other programs based on the SMC’
approximation, and fastsimcoal becomes increasingly faster than MaCS with larger recombination
rates and with migration.

fsc26 manual

69

n=20, recombination (CPU times in seconds)

Data set No. of
replicates

Sequence
length

Program
ms MaCS fastsimcoal

1popSmallSample

1000 1 Mb 0.344 0.242 0.095

100 10 Mb 159.246 2.618 0.460

100 100 Mb x 26.124 4.364

2popSmallSample

1000 1 Mb 0.378 0.907 0.152

100 10 Mb 165.507 9.094 1.080

100 100 Mb x 97.876 10.559

x : ms crashed

For small sample sizes (total n=20) and with recombination, the SMC’ based programs are becoming
much faster than ms, which fails to run for 100Mb sequences. For such small sample sizes,
fastsimcoal is 2.5 to 9.3 times faster than MaCS. For MaCS and fastsimcoal, computing time
increases approximately linearly with sequence length, as expected.

n=2000, recombination (CPU times in seconds)

Data set No. of
replicates

Sequence
length

Program
ms MaCS fastsimcoal

1popLargeSample

1000 1 Mb 3.7 28.1 25.2

100 10 Mb x 327.5 235.7

100 100 Mb x 3700.8 2635.4

2popLargeSample

1000 1 Mb 3.9 33.3 25.9

100 10 Mb x 393.5 240.6

100 100 Mb x 4311.1 2684.7

x : ms crashed

For large sample sizes (total n=2000), ms is actually faster than the two other programs for a “small”
sequence of 1Mb, but failed to run successfully for longer sequences. For these large sample sizes,
fastsimcoal is 1.2 to 1.8 times faster than MaCs. fastsimcoal computing time still increases
approximately linearly with sequence length, which is not the case of MaCS, which becomes slightly
penalized by larger sequences. Note however, that for 1Mb and 10Mb, we used fastsimcoal -k
options allowing it to keep all simulated sites in memory before writing them to the output file,
which was not possible for 100Mb sequences, which would use up too much memory.

fsc26 manual

70

COMPARATIVE SPEED TESTS: FSC21 VS. FSC25

We report here some comparative speed test done under Win8.1, using the 64 bit version of
fastsimcol21 and fsc25. The tests were performed on a DELL computer equipped with an Intel i7-
3770 processor at 3.4 Ghz (quadcore).

 Programs
 fsc25 (1 thread) fsc25 (8 threads)
Data set fsc21 -c1 -B1 gain -c8 -B8 gain

DNA sequence
constant population of 10,000
diploids, n=100)

10 x 100000 x 100 bp no rec 18.08 s 12.65 s 1.43 3.85 s 4.70
10 x 1000000 x 100 bp no rec 26.04 s 22.97 s 1.13 8.50 s 3.06
10 x 10 Mb with rec 10.47 s 10.34 s 1.01 10.37 s 1.01
1 x 100 Mb with rec 13.59 s 12.88 s 1.06 13.62 s 1.00

FREQ (parameter estimation)
1PopExpInst20Mb -n100000 -L5 14.53 s 8.14 s 1.79 2.53 s 5.74
2PopDiv20Mb -n100000 -L5 27.77 s 20.91 s 1.33 4.91 s 5.66
2PopDivMigr20Mb -n100000 -L5 48.94 s 35.54 s 1.38 8.45 s 5.79
3PopExpBotm -n10000 -L5 200.48 s 167.66 s 1.20 35.63 s 5.63
3PopExpBotm mSFS -n10000 -L5 123.39 s 111.96 s 1.10 24.00 s 5.14
10Pop2ContiIsl 1 -n1000 -L5 191.11 s 129.35 s 1.48 32.54 s 5.87
10Pop2ContiIsl 2 -n1000 -L5 182.18 s 121.07 s 1.50 32.38 s 5.63

Optimizations have not been performed in case of recombination, and in that case fsc25 performs
in a way similar to fsc21. In absence of recombination, and with a single thread activated (as on a
cluster), speed gain can be of up to 43% for DNA sequence simulation, and up to 80% for parameter
estimation. When using the multithreaded option (-c0 using all available computing threads, 8 in
the present case), the speed gain is 3 to 4x for DNA sequence simulation, and > 5x for parameter
estimation. Again, multithreading was not implemented for runs with recombination, but there is
no penalty activating this option.
Note that the command line options are not optimal for parameter estimation, but they were just
chosen for achieving reasonable computing times for comparative purposes.
The bash file “fsc_speed_test.sh” and all necessary files to perform these tests can be found in the
“example file” directory.

fsc26 manual

71

COMPARATIVE SPEED TESTS: FSC25 VS. FSC25.2.21 VS. FSC26.0

We have compared the speed of fsc26 with two previous version of the program: fsc25 released on
July 2014, fsc25.2.21 released in November 2015.
Computations were done on a DELL Precision 5810 with 16 Gb RAM and two quad-processors Intel
Xeon 1680 v3 at 3.20 Ghz.

Computation times for the different programs
executed with different number of threads (x-
axis). Speed gain compared to fsc25 are
reported on top of each bar.
• With 1PopDNAnoRec100Mb.par, one

simulates 10 times 100Mb of non
recombining DNA

• With 3PopExpBot20Mb, one estimates
the demography of 3 populations where
two of them had an exponential growth
(see below), which makes extensive use
of logarithms

• 3PopBot20Mb, same things as
3PopExpBot20Mb but without
exponential growth

Command lines:
For fsc25, fsc25221, and fsc26

./ fsc -i 1PopDNANoRec100Mb.par -n10 -I -x --seed 1234 --logprecision xx -q -cyy -B8

For fsc25 and fsc25221

./ fsc -t 3PopExpBot20Mb.tpl -e 3PopExpBot20Mb.est -d -M 0.001 -n100000 -N100000 -l5 -L5 -
-seed 1234 --multiSFS -q -cyy -B8

fsc26 manual

72

./ fsc -t 3PopBot20Mb.tpl -e 3PopBot20Mb.est -d -M 0.001 -n100000 -N100000 -l5 -L5 --seed
1234 --multiSFS -q -cyy -B8

For fsc26

./ fsc -t 3PopExpBot20Mb.tpl -e 3PopExpBot20Mb.est -d -M -n100000 -L5 --seed 1234 --
logprecision xx --multiSFS -q -cyy -B8

./ fsc -t 3PopBot20Mb.tpl -e 3PopBot20Mb.est -d -M -n100000 -L5 --seed 1234 --
logprecision xx --multiSFS -q -cyy -B8

Where fsc is one of the three fsc programs, xx is the log precision for fsc26, and yy is the number of
threads.

COMPARATIVE PATTERNS OF SIMULATED MOLECULAR DIVERSITY

NUMBER OF PAIRWISE DIFFERENCES

We report below a comparison of the patterns of diversity within and between populations
simulated by ms, MaCs and fastsimcoal.

ms results are shown with a black line, MaCs with a red line, and fastsimoal, with a blue line. In all
cases, the empirical distributions of the number of pairwise differences were computed from
100,000 simulations of the coalescent of 2 genes. The 2 genes were drawn from a single population
for the one-population case, and were drawn each from a different population in the two-island
model case. We used the following population parameters: 4 100Nθ µ= = for the entire sequence
in the one population case; 0 14 4 25N Nθ µ µ= = = and 4 0.5M Nm= = for the two-island case; and

4R Nr= (where r is the total recombination rate between the two ends of the sequence to be
simulated) was varied between 0 and 1000, as shown above.

fsc26 manual

73

In all cases, MaCS and fastsimcoal lead to identical distributions, which is expected as they are both
based on the same SMC’ approximation. In absence of recombination MaCS and fastsimcoal give
also exactly the same distributions as ms, but are just running 7-10 times slower, as was seen in the
previous section. With very high recombination rates, the SMC-based approximation of MaCS and
fastsimcoal is extremely close to the ancestral recombination graph (ARG) implemented in ms, in
keeping with previous results (McVean and Cardin 2005). For “intermediate” recombination rates
(R=10, R=100), some slight differences do emerge between ARG- and SMC-based programs, and
these differences are slightly more pronounced in the 2-island model. However, it seems that these
differences are much less than differences due to the choice of different demographic, mutation, or
recombination parameters.

LINKAGE DISEQUILIBRIUM

Previous studies have shown that patterns of LD were virtually undistinguishable between ms and
SMC’-based programs (Marjoram and Wall 2006, Chen et al. 2009) along DNA sequences.
Here, we report a comparison of the average LD (as measured by r2) between simcoal2 and
fastsimcoal between two SNP markers located at a given recombination distance expressed in R
units.

The results are based on 20,000 simulations and confirm that average r2 values are virtually
undistinguishable between the two approaches.

fsc26 manual

74

EXAMPLE FILES FOR THE ESTIMATION OF DEMOGRAPHY FROM THE (JOINT) SFS

ISOLATION WITH MIGRATION (IM) SCENARIO

IM20Mb.tpl

//Parameters for the coalescence simulation program : simcoal.exe
2 samples to simulate :
//Population effective sizes (number of genes)
NPOP1
NPOP2
//Samples sizes and samples age
20
30
//Growth rates: negative growth implies population expansion
0
0
//Number of migration matrices : 0 implies no migration between demes
2
//Migration matrix 0
0 MIG21
MIG12 0
//Migration matrix 1
0 0
0 0
//historical event: time, source, sink, migrants, new deme size, growth rate, migr mat index
1 historical event
TDIV 0 1 1 RESIZE 0 1
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
1
//per Block:data type, number of loci, per gen recomb and mut rates
FREQ 1 0 2.5e-8e-8

IM20Mb.est

// Priors and rules file
// *********************

[PARAMETERS]
//#isInt? #name #dist.#min #max
//all N are in number of haploid individuals
1 ANCSIZE unif 100 100000 output
1 NPOP1 unif 100 100000 output
1 NPOP2 unif 100 100000 output
0 N1M21 logunif 1e-2 20 hide
0 N2M12 logunif 1e-2 20 hide
1 TDIV unif 100 20000 output

[RULES]

[COMPLEX PARAMETERS]

0 RESIZE = ANCSIZE/NPOP2 hide
0 MIG21 = N1M21/NPOP1 output
0 MIG12 = N2M12/NPOP2 output

fsc26 manual

75

COMMAND LINE FOR PARAMETER ESTIMATION

./ fsc26 -t IM20Mb.tpl -n100000 -d -e IM20Mb.est -M -L 40 -c6 -q

DIVERGENCE OF THREE POPULATIONS

3PopExpBot20Mb.tpl

//Parameters for the coalescence simulation program : fastsimcoal.exe
3 samples to simulate :
//Population effective sizes (number of genes)
NPOPAF
2000000
2000000
//Samples sizes and samples age
20
20
20
//Growth rates : negative growth implies population expansion
0
R1
R1
//Number of migration matrices : 0 implies no migration between demes
2
//Migration matrix 0
0.0000 0.0000 0.0000
0.0000 0.0000 MIG
0.0000 MIG 0.0000
//Migration matrix 1
0 0 0
0 0 0
0 0 0
//historical event: time, source, sink, migrants, new deme size, growth rate, migr mat index
4 historical event
TDIV 2 0 1 1 0 1
TDIV 1 0 1 1 0 1
TBOT 0 0 0 RES1 0 1
TENDBOT 0 0 0 RES2 0 1
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
1
//per Block:data type, number of loci, per gen recomb and mut rates
FREQ 1 0 2.5e-8

3PopExpBot20Mb.est

// Priors and rules file
// *********************

[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
1 ANCSIZE unif 1000 100000 output
1 NBOT unif 10 2000 output
1 NPOPAF unif 1000 100000 output
1 NPOPOOA unif 10 10000 output
1 TDIV unif 10 10000 output
1 TPLUSDIV unif 10 10000 hide
0 MIG logunif 1e-5 1e-2 output

fsc26 manual

76

[RULES]

[COMPLEX PARAMETERS]
1 TBOT = TDIV+TPLUSDIV output
0 RATIO_OOA_EA = NPOPOOA/2000000 hide
0 RTEA = log(RATIO_OOA_EA) hide
0 R1 = RTEA/TDIV hide
1 TENDBOT = TBOT+500 hide
0 RES1 = NBOT/NPOPAF hide
0 RES2 = ANCSIZE/NBOT hide

COMMAND LINE FOR PARAMETER ESTIMATION

./ fsc26 -t 3PopExpBot20Mb.tpl -n100000 -d -e 3PopExpBot20Mb.est -M -L40 -q --multiSFS -C10 -c8

Comments:
- Here we use the multidimensional SFS (--multiSFS)
- We also impose a minimum observed SFS entry of 10 (-C10) to appear in the likelihood,

entries of the observed SFS with lower observations wil be collapsed into a single entry
- We use 8 threads to speed up computations (-c8)

HIERARCHICAL ISLAND MODEL

10Pop2ContiIsl.tpl

//Parameters for the coalescence simulation program : fastsimcoal.exe
12 samples to simulate :
//Population effective sizes (number of genes)
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
20000000
20000000
//Samples sizes and samples age
20
20
20
20
20
20
20
20
20
20
0

fsc26 manual

77

0
//Growth rates : negative growth implies population expansion
0
0
0
0
0
0
0
0
0
0
0
0
//Number of migration matrices : 0 implies no migration between demes
3
//Migration matrix 0
0 0 0 0 0 0 0 0 0 0 M010 0
0 0 0 0 0 0 0 0 0 0 M110 0
0 0 0 0 0 0 0 0 0 0 M210 0
0 0 0 0 0 0 0 0 0 0 M310 0
0 0 0 0 0 0 0 0 0 0 M410 0
0 0 0 0 0 0 0 0 0 0 0 M511
0 0 0 0 0 0 0 0 0 0 0 M611
0 0 0 0 0 0 0 0 0 0 0 M711
0 0 0 0 0 0 0 0 0 0 0 M811
0 0 0 0 0 0 0 0 0 0 0 M911
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
//Migration matrix 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 M511
0 0 0 0 0 0 0 0 0 0 0 M611
0 0 0 0 0 0 0 0 0 0 0 M711
0 0 0 0 0 0 0 0 0 0 0 M811
0 0 0 0 0 0 0 0 0 0 0 M911
0 0 0 0 0 0 0 0 0 0 0 M1211
0 0 0 0 0 0 0 0 0 0 0 0
//Migration matrix 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix index
13 historical event
TISLAND1 0 10 1 1 0 1
TISLAND1 1 10 1 1 0 1
TISLAND1 2 10 1 1 0 1
TISLAND1 3 10 1 1 0 1
TISLAND1 4 10 1 1 0 1
TISLAND1 10 10 0 0.0001 0 1
TISLAND2 5 11 1 1 0 2
TISLAND2 6 11 1 1 0 2
TISLAND2 7 11 1 1 0 2
TISLAND2 8 11 1 1 0 2
TISLAND2 9 11 1 1 0 2
TISLAND2 10 11 1 1 0 2
TISLAND2 11 11 0 RESIZE 0 2//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
1
//per Block:data type, number of loci, per gen recomb and mut rates
FREQ 1 0 2.5e-8

fsc26 manual

78

10Pop2ContiIsl.est

// Priors and rules file
// *********************

[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
1 ANCSIZE unif 10 100000 output
0 NM0 logunif 0.01 100 output
0 NM1 logunif 0.01 100 output
0 NM2 logunif 0.01 100 output
0 NM3 logunif 0.01 100 output
0 NM4 logunif 0.01 100 output
0 NM5 logunif 0.01 100 output
0 NM6 logunif 0.01 100 output
0 NM7 logunif 0.01 100 output
0 NM8 logunif 0.01 100 output
0 NM9 logunif 0.01 100 output
0 NM_12 logunif 0.01 100 output
1 TISLAND1 unif 10 20000 output
1 TPLUS unif 10 20000 hide

[RULES]

[COMPLEX PARAMETERS]

//Assume an island haploid population size of 1000 for all islands
1 TISLAND2 = TISLAND1+TPLUS output
0 M010 = NM0/1000 hide
0 M110 = NM1/1000 hide
0 M210 = NM2/1000 hide
0 M310 = NM3/1000 hide
0 M410 = NM4/1000 hide
0 M511 = NM5/1000 hide
0 M611 = NM6/1000 hide
0 M711 = NM7/1000 hide
0 M811 = NM8/1000 hide
0 M911 = NM9/1000 hide
0 M1211 = NM_12/2000 hide
0 RESIZE = ANCSIZE/20000000 hide

COMMAND LINE FOR PARAMETER ESTIMATION

./ fsc26 -t 10Pop2ContiIsl.tpl -n50000 -d -e 10Pop2ContiIsl.est -L30 -M -q

HUMAN AFRICAN DEMOGRAPHY WITH SNP ASCERTAINMENT

fsc26 manual

79

p4NocpgSanYor4.tpl

//Parameters for the coalescence simulation program : simcoal.exe
3 samples to simulate : Exponential growth : 1000 to 100,000,000 started 3000 generations ago
//Population effective sizes (number of genes)
NSan
NYor
1000
//Samples sizes
12
44
1 1600
//Growth rates : negative growth implies population expansion
0
0
0
//Number of migration matrices : 0 implies no migration between demes
0
//historical event: time, source, sink, migrants, new deme size, new growth rate, migration matrix
index
6 historical event
TDMS 0 0 0 RES_SAN 0 0
TDMY 1 1 0 RES_YOR 0 0
TAdm 0 1 AYS 1 0 0
TAdm 1 0 ASY 1 0 0
TDIVSanYor 1 0 1 RES_AF 0 0
16000 2 0 1 RES_ANC 0 0
//Number of independent loci [chromosome]
1 0
//Per chromosome: Number of contiguous linkage Block: a block is a set of contiguous loci
1
//per Block:data type, number of loci, per gen recomb and mut rates
FREQ 1 0 1e-7

Note that the divergence time with Denisovans is fixed, and this time is used to calibrate the other
parameters
p4NocpgSanYor4.tpl

// Priors and rules file
// *********************

[PARAMETERS]
//#isInt? #name #dist.#min #max
//all Ns are in number of haploid individuals
1 NSan unif 1000 2e6 output
1 NYor unif 1000 2e6 output
1 NASan unif 1000 1e5 output
1 NAYor unif 1000 1e5 output
1 HSIZE unif 1000 1e5 output
1 ANCSIZE unif 1000 1e5 output
1 TDMS unif 10 500 output
1 TDMY unif 10 500 output
1 TAdm unif 10 500 output
1 TPlusAdm unif 1 5000 hide
0 AYS unif 0 0.2 output
0 ASY unif 0 0.2 output

[RULES]

[COMPLEX PARAMETERS]
1 TDIVSanYor = TAdm+TPlusAdm output
0 RES_SAN = NASan/NSan hide
0 RES_YOR = NAYor/NYor hide
0 RES_AF = HSIZE/NASan hide
0 RES_ANC = ANCSIZE/HSIZE hide

fsc26 manual

80

COMMAND LINE FOR PARAMETER ESTIMATION

./ fsc26 -t p4NocpgSanYor4.tpl -n100000 -d -e p4NocpgSanYor4.est -M -L 20 -a0 -A2 -q -0 -C2 -multiSFS

Comments:
- -a0 indicates that the ascertainment occurred in population 0 (San)
- -A2 indicates that 2 chromosomes were used to infer the polymorphism status for each SNP
- -0 indicates that one does not use information on the number of monomorphic sites
- --multiSFS indicates that the 3D SFS is used

fsc26 manual

81

9. REFERENCES

Adams, A. M., and R. R. Hudson. 2004. Maximum-likelihood estimation of demographic parameters

using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics
168:1699-1712.

Beaumont, M. A., W. Zhang, and D. J. Balding. 2002. Approximate Bayesian computation in
population genetics. Genetics 162:2025-2035.

Brent, R. P. 1973. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs,
NJ.

Chen, G. K., P. Marjoram, and J. D. Wall. 2009. Fast and flexible simulation of DNA sequence data.
Genome Res 19:136-142.

Csillery, K., M. G. Blum, O. E. Gaggiotti, and O. Francois. 2010. Approximate Bayesian Computation
(ABC) in practice. Trends in Ecology & Evolution 25:410-418.

Excoffier, L., and H. E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform
population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564-567.

Garrigan, D. 2009. Composite likelihood estimation of demographic parameters. BMC genetics
10:72.

Hernandez, R. D., S. H. Williamson, L. Zhu, and C. D. Bustamante. 2007. Context-dependent
mutation rates may cause spurious signatures of a fixation bias favoring higher GC-content
in humans. Mol Biol Evol 24:2196-2202.

Korneliussen, T. S., A. Albrechtsen, and R. Nielsen. 2014. ANGSD: Analysis of Next Generation
Sequencing Data. BMC Bioinformatics 15:356.

Laval, G., and L. Excoffier. 2004. SIMCOAL 2.0: a program to simulate genomic diversity over large
recombining regions in a subdivided population with a complex history. Bioinformatics
20:2485-2487.

Lu, Y., N. Patterson, Y. Zhan, S. Mallick, and D. Reich. 2011. Technical design document for a SNP
array that is optimized for population genetics.

Marjoram, P., and J. D. Wall. 2006. Fast "coalescent" simulation. BMC Genet 7:16.
McVean, G. A., and N. J. Cardin. 2005. Approximating the coalescent with recombination. Philos

Trans R Soc Lond B Biol Sci 360:1387-1393.
Meng, X. L., and D. B. Rubin. 1993. Maximum likelihood estimation via the ECM algorithm: A general

framework. Biometrika 80:267-278.
Nielsen, R. 2000. Estimation of population parameters and recombination rates from single

nucleotide polymorphisms. Genetics 154:931-942.
Nielsen, R., M. J. Hubisz, and A. G. Clark. 2004. Reconstituting the Frequency Spectrum of

Ascertained Single-Nucleotide Polymorphism Data. Genetics 168:2373-2382.
Nordborg, M. 1997. Structured coalescent processes on different time scales. Genetics 146:1501-

1514.
Nordborg, M., and P. Donnelly. 1997. The coalescent process with selfing. Genetics 146:1185-1195.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes in C++:

The Art of Scientific Computing. 3rd edition. Cambridge University Press, Cambridge.
Prufer, K., F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, A. Heinze, G. Renaud, P. H.

Sudmant, C. de Filippo, H. Li, S. Mallick, M. Dannemann, Q. Fu, M. Kircher, M. Kuhlwilm, M.
Lachmann, M. Meyer, M. Ongyerth, M. Siebauer, C. Theunert, A. Tandon, P. Moorjani, J.
Pickrell, J. C. Mullikin, S. H. Vohr, R. E. Green, I. Hellmann, P. L. Johnson, H. Blanche, H. Cann,
J. O. Kitzman, J. Shendure, E. E. Eichler, E. S. Lein, T. E. Bakken, L. V. Golovanova, V. B.

fsc26 manual

82

Doronichev, M. V. Shunkov, A. P. Derevianko, B. Viola, M. Slatkin, D. Reich, J. Kelso, and S.
Paabo. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains.
Nature 505:43-49.

Thornton, K. R. 2009. Automating approximate Bayesian computation by local linear regression.
BMC Genet 10:35.

Wegmann, D., C. Leuenberger, S. Neuenschwander, and L. Excoffier. 2010. ABCtoolbox: a versatile
toolkit for approximate Bayesian computations. BMC Bioinformatics 11:116.

	2. Introduction
	Citation
	Discussion group
	Acknowledgements

	3. Changes compared to simcoal2 and fastsimcoal
	Fastsimcoal vs. simcoal2
	fastsimcoal2 vs. fastsimcoal (January 2013)
	fastsimcoal2.01 vs. fastsimcoal2 (December 2013)
	fastsimcoal2.5 vs. fastsimcoal2.1 (July 2014)
	fastsimcoal2.5.1 vs. fastsimcoal2.5 (SEptember 2014)
	fastsimcoal2.5.2 vs. fastsimcoal2.5.1 (March 2015)
	fastsimcoal2.5.2.8 vs. fastsimcoal2.5.2 (May 2015)
	fastsimcoal2.5.2.21 vs. fastsimcoal2.5.2.8 (NOVEMBER 2015)
	fastsimcoal26 (fsc26) vs. fastsimcoal2.5.2.21 (OCTOBRE 2017)

	4. Getting started
	Intallation
	Running fsc

	5. Structure of input files
	A simple unsubdivided population and DNA sequences
	Migration
	Historical events
	Serial sampling
	Inbreeding
	Simulation of several chromosomal segments
	Recombination
	Input file syntax
	Number of populations samples
	Deme sizes
	Samples sizes, sampling times and inbreeding
	Growth rate
	Migration matrices
	Historical events
	Genetic settings: Chromosomes, Blocks, data types, mutation, and recombination
	Genetic settings subsections
	Specific parameters for different data types
	A special note on the simulation of SNP data
	Examples:

	A relatively complex example with 3 populations, serial sampling, bottleneck, and introgression

	6. Sampling parameter values from some prior distributions or ranges
	Template file
	Caution

	Estimation file
	Parameters section
	Rules section
	Complex Parameters Section
	Additional syntax
	Reference parameter during parameter optimization
	Parameter rescaling

	Caution

	Output of sampled parameters
	Using predefined values for a particular evolutionary model
	Definition file

	7. Estimating parameters from the site frequency spectrum
	Example of the estimation of a bottleneck demographic history
	Observed SFS
	Template file
	Estimation file
	Important notes

	Command line
	Running fastsimcoal with options specified in the file "fsc_run.txt"
	Output files

	Observed SFS file names
	One observed sample
	Two observed samples
	More than two observed samples
	Multidimensional SFS
	Ascertained SFS files

	8. Appendix
	Command-line options
	Multithreading
	Sequential Markov coalescent approximation
	Site frequency spectrum
	Minor allele Site frequency spectrum
	Multidimensional site frequency spectrum
	Generating SFS in single files
	Generating non-parametric bootstraped SFS
	Caution and use of block-bootstrap with real data

	Generating parametric bootstraps SFS
	Specifying initial values for bootstrap parameter estimations

	Extension of the SMC’ algorithm to multiple recombination events
	Integration into Approximate Bayesian Computations (ABC)
	Estimation of demographic parameters from the SFS via likelihood maximization
	Simulation-based likelihoods
	Composite likelihoods
	Maximizing the likelihood
	Estimating demographic parameters from SNPs with known ascertainment

	Running fsc26 on a cluster
	Simulation of Genetic diversity
	Estimation of demographic parameters from the SFS

	Comparative Speed tests: fastsimcoal vs. ms and MaCS
	Data sets
	Results

	Comparative Speed tests: fsc21 vs. fsc25
	Comparative Speed tests: fsc25 vs. fsc25.2.21 vs. fsc26.0
	Comparative patterns of simulated molecular diversity
	Number of pairwise differences
	Linkage disequilibrium

	Example files for the estimation of demography from the (joint) SFS
	Isolation with Migration (IM) scenario
	Command line for parameter estimation

	Divergence of three populations
	Command line for parameter estimation

	Hierarchical island model
	Command line for parameter estimation

	Human African demography with SNP ascertainment
	Command line for parameter estimation

	9. References

