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ABSTRACT
Distributions of pairwise differences often called “mismatch distributions” have been extensively used

to estimate the demographic parameters of past population expansions. However, these estimations relied
on the assumption that all mutations occurring in the ancestry of a pair of genes lead to observable
differences (the infinite-sites model). This mutation model may not be very realistic, especially in the case
of the control region of mitochondrial DNA, where this methodology has been mostly applied. In this
article, we show how to infer past demographic parameters by explicitly taking into account a finite-sites
model with heterogeneity of mutation rates. We also propose an alternative way to derive confidence
intervals around the estimated parameters, based on a bootstrap approach. By checking the validity of
these confidence intervals by simulations, we find that only those associated with the timing of the expansion
are approximately correctly estimated, while those around the population sizes are overly large. We also
propose a test of the validity of the estimated demographic expansion scenario, whose proper behavior
is verified by simulation. We illustrate our method with human mitochondrial DNA, where estimates of
expansion times are found to be 10–20% larger when taking into account heterogeneity of mutation rates
than under the infinite-sites model.

WITH the advent of the coalescent theory (King- and its magnitude, but the choice of parameters to be
man 1982), people have become increasingly estimated depends on a particular scenario of popula-

aware of the profound effect of demography on the tion growth one might choose, such as exponential
amount of genetic variability maintained in a popula- growth, logistic growth, or an instantaneous stepwise
tion (Hudson 1990; Donnelly and Tavaré 1997). Pop- population size change. These three models are obvi-
ulation expansions or contractions indeed leave recog- ously related but have rarely been compared (but see
nizable signatures in the pattern of molecular diversity Polanski et al. 1998). The latter model has been favored
(reviewed in Harpending et al. 1998). For instance, in the literature due to its simplicity and because simula-
sudden demographic expansions lead to star-shaped tion studies have shown that it was a good approxima-
phylogenies and unimodal distributions of pairwise dif- tion of rapid logistic growth (Rogers and Harpending
ferences (Slatkin and Hudson 1991; Rogers and 1992). Rogers and Harpending (1992) convincingly
Harpending 1992), to a reduction of the number of showed that under an infinite-sites model, the shape of
segregating sites (Bertorelle and Slatkin 1995; Aris- the distribution of the number of observed differences
Brosou and Excoffier 1996; Tajima 1996), to a lower between pairs of DNA sequences (often called the mis-
amount of linkage disequilibrium between linked loci match distribution) conveyed information on the tim-
(Slatkin 1994), or to the occurrence of a large propor- ing and the amplitude of a stepwise expansion. They
tion of very low frequency mutations (Fu and Li 1993; proposed a nonlinear least-squares approach (Rogers
Fu 1997). Note that population bottlenecks usually have and Harpending 1992) or a method of moments (Rog-
other recognizable effects, often opposed to those of ers 1995) to find the theoretical mismatch distribution
population expansions (e.g., Tajima 1993; Cornuet that would best fit the observations. Several authors
and Luikart 1996; Harpending et al. 1998). noted that this approach could be inadequate (Lund-

When exposed to the evidence of a past demographic strom et al. 1992; Bertorelle and Slatkin 1995; Aris-
expansion, one might want to estimate the parameters Brosou and Excoffier 1996; Wakeley and Hey 1997)
of the expansion, such as the time at which it occurred because the infinite-sites model was not realistic, espe-

cially in the case of the mitochondrial genome where
an important heterogeneity of mutation rates had been
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expansions (Lundstrom et al. 1992; Aris-Brosou and
Excoffier 1996) and would thus lead to an underesti-
mation of the age of the expansion and to an overestima-
tion of its magnitude. Rogers and his collaborators tried
to address these concerns. They concluded that both
the mean number of pairwise difference (Rogers 1992)
and the confidence intervals around the estimated de-
mographic parameters were relatively unaffected by
slight to moderate amounts of rate heterogeneity (Rog-
ers et al. 1996). They thus proposed to ignore any het-
erogeneity of mutation rates when estimating demo-
graphic parameters from the mismatch distribution and
therefore to stick to the infinite-sites predictions. One
cannot be entirely satisfied by these conclusions because

Figure 1.—Diagrammatic representation of the instanta-simulation studies have shown that the mean of the
neous stepwise demographic expansion model considered inmismatch distribution was indeed very sensitive to rate
this study.heterogeneity (Aris-Brosou and Excoffier 1996) and

that the relative insensitivity of the confidence intervals
to rate heterogeneity was mainly due to their very large

mutation rate per generation per gene. Here, Fi(u) issize (Rogers et al. 1996).
also the probability of observing i differences betweenWe thus propose in this article to extend the model
two genes in an equilibrium population as (Wattersonof Rogers and Harpending (1992) to explicitly take
1975)into account possible heterogeneity of mutation rates

when estimating the demographic parameters. We also
Fi(u) 5

ui

(u 1 1)i11
. (2)propose an alternative way to derive confidence intervals

around the estimated parameters based on a simple
Rogers and Harpending (1992) rederived Equation 1bootstrap approach. We check by simulations the valid-
and used it to describe the distribution of the numberity of those confidence intervals for a few test cases and
of pairwise differences between nonrecombining DNAshow that only those associated with the timing of the
sequences or RFLP haplotypes in a given sample, whichexpansion are approximately correctly estimated. As
they called the “mismatch distribution.” They proposedone can sometimes observe a poor fit between the data
to estimate the demographic parameters u0, u1, as welland the mismatch distribution predicted by the model,
as the expansion time t directly from this mismatchwe also propose a test of the validity of the stepwise
distribution.demographic expansion scenario. We finally illustrate

The mismatch distribution under a finite-sites model:our method by human data from the mitochondrial
Under the finite-sites model, F ∞

i (u1, u0, t) provides theDNA control region.
distribution of the number of mutations having occurred
during the evolution of a random pair of genes. Note

THEORY AND METHODS that this number can be equal to or larger than the
number of observed differences, depending on whetherThe mismatch distribution under the infinite-sites
the same site has been hit several times by mutationsmodel: We assume that t generations ago, a population
or not. In this case, the expected mismatch probabilityat equilibrium of size N0 entered a demographic expan-
distribution noted by Fm

i (u1, u0, t) can be obtained bysion phase to instantaneously reach a new size N1 and
taking into account those cases where j mutations ( j $that it remained at that size ever since. Under this demo-
i) have led to exactly i differences, asgraphic scenario described in Figure 1 and assuming

that every new mutation occurs at a new site [the infinite-
Fm

i (u1, u0, t) 5 o
∞

j5i
F ∞

j (u1, u0, t)Hm(i, j), (3)sites mutation model of Kimura (1969)], Li (1977) de-
rived an expression for the probability of observing i

where Hm(i, j) is the conditional probability of observingdifferences between two genes taken at random from
i differences given j mutations have occurred in thethis population, as
ancestry of two sequences of length m. We now describe
how to obtain these conditional probabilities Hm(i, j)F ∞

i (u1, u0, t) 5 Fi(u1) 1 exp12t
(u1 1 1)

u1
2

starting with m 5 1 and extending it to a sequence of
arbitrary length.

3 o
i

j50

tj

j!
[Fi2j(u0) 2 Fi2j(u1)] , (1) One-site case: We first solve the problem for one site

(m 5 1) assuming Kimura’s two-parameters model of
mutation (Kimura 1980) with arbitrary relative transi-where u0 5 2N0u, u1 5 2N1u, t 5 2ut, and u is the total
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tion (s) and transversion (v) rates subject to s 1 v 5 1. finally have
Conditional on the number of mutations, we consider
the mutation process as a random walk between the Hm(i, j) 5 o

j2i11

l50

b(l, j,p)(P1 1 P2)
nucleotides A, C, G, and T. This Markov process has
the single-step transition matrix

5 o
j2i11

l50

b(l, j, p){H 1(1, l)Hm21(i 2 1, j 2 l)

1 H 1(0, l)Hm21(i, j 2 l)}, (6)
M 5

A
C
G
T





A C G T
0 v/2 s v/2

v/2 0 v/2 s
s v/2 0 v/2

v/2 s v/2 0





,
where b(l, j, p) 5 ( j !/l !( j 2 l)!) pl(1 2 p)j2l is the
binomial probability with parameter p 5 1/m.

The mismatch distribution under a two-rates finite-sites
model: Mutation rate heterogeneity arises when the mu-where the elements of each row add up to one. The jth
tation rates are not equal for all nucleotide sites. Thepower of the matrix M can be used to describe the
simplest form of heterogeneity to be considered is a two-impact of j mutations at that site. A closed-form expres-
rates mutation model, where we make the distinctionsion for Mj can be conveniently obtained by a diagonal-
between fast and slow sites. As most mutations accumu-ization of M, as M 5 VDV21, where D 5 diag {2s, 2s,
late at a small number of fast sites, convergent or reversev 1 s, 2v 1 s} and V is a matrix where the columns are
mutations can become quite common. The conse-the eigenvectors of M.
quence of this type of heterogeneity on the pattern ofWe thus obtain
diversity has been studied in the case of the control
region of human mitochondrial DNA (Wakeley 1993;
Yang 1994, 1996; Bertorelle and Slatkin 1995; Yang

Mj 5 VDj V21 5






aj bj gj bj
bj aj bj gj
gj bj aj bj
bj gj bj aj






, et al. 1995). Following Yang (1996), who inferred the
number of segregating sites in a stationary population
under the finite-sites model for two classes of mutation

where aj 5 1⁄4(1 1 2(2s)j 1 (s 2 v)j), bj 5 1⁄4(1 2 (s 2 rates, we can modify Equation 3 by considering that m1
v)j), and gj 5 1⁄4(1 2 2(2v)j 1 (s 2 v)j). The diagonal of the m sites are fast and that m2 are slow. In this
terms of Mj, here all equal to aj, represent the probability case, we have to take into account all possible ways of
of returning to the initial state after j mutations. It thus partitioning the i differences among the slow and fast
follows that regions. If we assume that mutations occur indepen-

dently, the probabilities of these partitions simply followH 1(0, j) :5 P(no difference|j mutations) 5 aj, a binomial distribution. The expected mismatch proba-
bility distribution is thus given byH 1(1, j) :5 P(one difference|j mutations) 5 1 2 aj.

(4) Fm1;m2i (u1, u0, t) 5 o
∞

j5i
F ∞

j (u1, u0, t) o
i

l50
o

j

k50

b(k, j, p)
Multisite case, homogeneous mutation rates: Instead of

3 Hm1(l, k) Hm2(i 2 l, j 2 k), (7)deriving an explicit equation for Hm(i, j), when m . 1
we can compute these probabilities numerically using

where b(k, j, p) is the same binomial probability functiona recurrence equation, as shown below. Let us suppose
as in Equation 6 but with parameter p 5 m1r/(m1r 1that we have already derived the probability Hm21(i, j)
m2) being the conditional probability that a mutationand that we want to study the case for an additional site
will hit one of the m1 fast mutating sites, and r is hereand thus derive Hm(i, j). Suppose that l mutations have
the ratio of fast and slow mutation rates. Note that Equa-occurred at the mth site and that the ( j 2 l) remaining
tion 7 is the equivalent to Yang’s (1996) Equation 39,mutations have occurred at the m 2 1 other sites. The
derived for the case of a stationary population. Yangprobability of observing overall i differences will depend
used an infinite-alleles mutation model, stipulating thatupon whether we observe one or no difference at the
once a site is hit by one or more mutations, we observemth site. With probability P1, one difference will be ob-
one difference. Due to the high transition bias, thisserved at the mth site and (i 2 1) at the (m 2 1) other
model also tends to overestimate the number of differ-sites, and with probability P2, all i differences will be
ences because it does not allow back mutations at non-observed among the (m 2 1) other sites. Therefore,
segregating sites.

P1 5 H 1(1, l)Hm21(i 2 1, j 2 l), Multisite case, m-rates mutation model: Suppose that we
have a sequence of length m and that each nucleotideP2 5 H 1(0, l)Hm21(i, j 2 l), (5)
has a potentially different probability pi (i 5 1 . . . m)
of being hit by a mutation, subject to the conditionwhere we admit that Hm21(21, j 2 l) 5 0. Summing
om

i pi 5 1. Under this m-rates model, Hm(i, j), notedover all possible l values and multiplying by the proba-
bility that l mutations occur at the additional site, we here HmR(i, j), can be also obtained by the recurrence
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relation given in (6) except that the parameter p is now to find those parameters that minimize the sum of
square deviations (SSD) between the observed mis-equal to pn/on

i51 pi. Here n is the index of the recursion
match distribution {Fi–obs}, i 5 1, . . . , n and its expecta-step (1 # n # m), and pn thus changes at every step of
tion {Fi–exp} under a particular model. SSD is convention-the recursion. It is important to note that, unlike the
ally defined ashomogenous mutation rate case, the intermediate re-

currence matrices are here meaningless, and only the
SSD 5 o

n

i50

(Fi–obs 2 Fi–exp)2. (9)last matrix obtained by this recurrence is correct for
the required heterogeneity pattern. Under this m-rates
mutation model, the expected mismatch distribution is Depending on which mutation model we consider, we
not given in a more complex form than in the constant replaced {Fi–exp} by the quantities defined in Equations
mutation rate case, as all the additional complexity of 3, 7, or 8. The Hooke-Jeeves algorithm starts from an
the model is embedded in the term HmR(i, j) to give arbitrary initial set of parameters and converges by an

iterative process to a local minimum. This minimization
FmR

i (u1, u0, t) 5 o
∞

j5i
F ∞

j (u1, u0, t)HmR(i, j). (8) procedure was mainly chosen for its robustness and its
ability to converge under nontrivial conditions.

Note that the two-rates model is a special case of the Bootstrap confidence intervals: We followed a para-
present model and that it could be treated similarly. In metric bootstrap approach to generate percentile con-
that case, the double summation of Equation 7 could fidence intervals around the estimated parameters û1,
be condensed into the last term of Equation 8. û0, and t̂ (see, e.g., Efron and Tibshirani 1993, p. 53

The mismatch distribution for gamma-distributed mutation and Chap. 13). The parametric model that we used here
rates: A gamma distribution of mutation rates can be is a coalescent process with superimposed mutations.
seen as a special case of the m-rates mutation model. We adapted the coalescent simulation program from
Such a distribution has been hypothesized for ex- Hudson (1990) to generate B samples of DNA se-
plaining the pattern of diversity in the control region quences according to the estimated parameters û1, û0,
of the mitochondrial genome (e.g., Kocher and Wilson and t̂. For each of the B simulated data sets, we applied
1991; Hasegawa et al. 1993; Wakeley 1993; Yang our estimation procedure according to Equation 3, 7,
1996). The density of the gamma distribution is given or 8 to evaluate B bootstrapped values u0

*, u1
*, and t*.

by For a given confidence level a, the approximate limits
of the confidence interval were obtained as the a/2 and
1 2 a/2 percentile values (Efron and Tibshirani 1993,f(x) 5

1
G(a)

xa21e2x,
p. 168). It is important to emphasize that this form of
parametric bootstrap assumes that the data are distrib-where a is the shape parameter of the gamma distribu-
uted according to the sudden expansion model.tion equal to V(x)/x 2, the inverse of the square of the

Testing the validity of the sudden expansion model:coefficient of variation of mutation rates. We can discre-
We tested the hypothesis that the observed data fittedtize the gamma distribution over the m nucleotides as
the sudden expansion model defined by the estimatedfollows. We draw an arbitrarily large number of continu-
parameters using the same parametric bootstrap ap-ous gamma-distributed variates (say 1 million) with
proach as described above. We used here SSD defined inmean and variance equal to the shape parameter a
Equation 9 as a test statistic. We obtained its distribution(Ahrens and Dieter 1974). The variates are then sorted
under the hypothesis that the estimated parameters areand divided into m groups of equal size. The mean value
the true ones by simulating B samples around the esti-of the ith group is then taken as a discretely distributed
mated parameters. As before, we reestimated each timegamma variate p̃i. The relative probability of being hit
new parameters u0

*, u1
*, and t* and computed their asso-by a mutation pi is then obtained by setting pi 5

ciated sums of squares SSDsim. The P value of the test isp̃i/om
i51 p̃i. Those pi’s can then be used directly in re-

therefore approximated bycursion Equation 6 to get the probabilities HmR(i, j)
required in Equation 8.

P 5
number of SSDsim larger or equal to SSDobs

B
.In the present article, we used the values of the shape

parameters a computed by S. Meyer (Meyer et al. 1999)
on a human mtDNA control region sequence database To check the accuracy of this procedure, we generated

1000 random data sets for the parameters u0 5 1, u1 5(Handt et al. 1998) as a 5 0.26 for HV1 and a 5 0.13
for HV2. 1000, and s 5 3 under a two-rates model with 270 slow

sites and 30 fast sites mutating 20 times faster than theEstimation of past demographic parameters using a
least-squares approach: We estimated the demographic slow sites, which corresponds to the simulation condi-

tions of the top of Table 1. The simulated distributionparameters u0, u1, and t from the mismatch distribution,
using a nonlinear least-squares approach. We use the of the P values for these parameters was almost uniform

between 0 and 1 (data not shown), suggesting that theHooke and Jeeves algorithm (Hooke and Jeeves 1963)
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SSD statistic provides a valid test of the sudden expan- region (Graven et al. 1995). Except for the curve based
on Rogers’ method of moments (Rogers 1995), thesion model.
shapes of the theoretical mismatch distributions are very
similar to each other and provide no real indication of

RESULTS the validity of the underlying model. Note also that a
much better fit is found for HV1 than for HV2. WhileWe show in Figure 2 the theoretical mismatch distri-
the shape of the best-fitted mismatch does not seem tobutions and the demographic parameters estimated us-
depend much on the mutation model, the values ofing different methods and mutation models for the two
the estimated parameters do change quite extensively,hypervariable segments of Mandenka mtDNA control
especially the expansion time t, which shows larger val-
ues for finite-sites models than for the infinite-sites
model. This is of course due to the fact that several
mutations can accumulate at a given site in finite-sites
models and that a longer evolutionary time is necessary
to lead to the same number of observed differences.
The magnitude of the expansion is also found to be
smaller in finite-sites models, in agreement with previ-
ous simulation results (Aris-Brosou and Excoffier
1996).

In Figure 3, we show the expected mismatch distribu-
tions fitted for the Turkana sample (Watson et al. 1996)
according to a finite-sites two-rates model (Figure 3a)
and to a finite-sites gamma distribution model (Figure
3b). We also report the average mismatch distributions
obtained from 5000 simulations performed according
to the estimated parameters. Simulated and expected
mismatch distributions are found to be in very good
agreement, motivating the use of simulations to get
empirical confidence intervals around the parameters.

To check if these confidence intervals have good cov-
erage properties (i.e., the true parameters should be
included in the confidence interval with a probability
1 2 a), we performed a series of simulations for a set
of predefined parameters. For a given set of parameters
u0, u1, and t, we simulated 1000 data sets from which
we estimated the parameters û0, û1, and t̂. For each set
of estimated parameters, we simulated 1000 additional
data sets from which new values u0

*, u1
*, and t* were

estimated. The distribution of these 1000 bootstrap val-
ues was used to evaluate the lower and upper limits of
a 100(1 2 a)% confidence interval around the û0, û1,
and t̂ values as the a/2 and 1 2 a/2 percentiles of the
distribution, respectively. The results of these analyses
are shown in Tables 1 and 2 for different types of muta-
tion rate heterogeneity. It can be seen that the only
parameter for which the bootstrap confidence interval
has a good coverage is t, as the proportion of the timesFigure 2.—Theoretical mismatch distributions obtained

under different mutation models. Moments, Rogers’ method the true value is outside the confidence interval is ap-
of moments (Rogers 1995) based on the mean and the vari- proximately equal to the significance level a. Note, how-
ance of the observed mismatch distribution. Infinite site, Rog-

ever, that the confidence interval is not well centered,ers and Harpending (1992) method based on Li’s equation
as the true values outside the confidence interval are(Li 1977). Two-rates, finite-sites model (300 bp). For HV1, 29

sites are mutating 12 times faster than the other sites, whereas always found on the left of the distribution. The boot-
for HV2, 17 sites are mutating 22 times faster than the other strap confidence intervals for u0 and u1 are much too
sites. m-rates, finite-sites model (300 bp) where mutation rates broad (the true value of the parameter is found too
are supposed to follow a gamma distribution with shape pa-

often within the empirical confidence interval). In Fig-rameter a equal to 0.26 for HV1 and 0.13 for HV2. Except
ure 4, we plot the distributions of the two statistics x 2for Rogers’ method of moments, the fit is done through a

least-squares procedure as defined in the text. x̂ and x̂ 2 x* for x 5 t and for x 5 u0. To generate true
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conservative confidence interval due to a too large up-
per bound (see Figure 4). Finally, both the estimate of
the population size after the expansion and its confi-
dence interval cannot be adequately recovered from
the mismatch distribution. However, as the bias in u1

appears mainly due to an overly large upper bound, the
lower bound for u1 could be useful even though still
underestimated.

For illustration purposes, we present in Figure 5 the
expected mismatch distributions of a few human sam-
ples analyzed for HV1 or HV2, as well as the limits of
a 95% confidence interval around the mismatch distri-
butions. Despite an obvious lack of goodness-of-fit for
some distributions, the adequacy of the sudden expan-
sion model could only be rejected for the Ngoebe HV2
sample (SSD P value 5 0.007). For the other samples,
random mismatch distributions generated by simula-
tions lead to SSD values larger than the observation
in .5% of the cases, making the observed mismatch
distributions compatible with the estimated parameters.

DISCUSSION

In this study, we extend the model of Rogers and
Harpending (1992) to estimate the parameters of a
sudden stepwise demographic expansion by explicitly
taking into account a possible heterogeneity of mutation
rates. Contrary to previous claims (Rogers 1992; Rog-Figure 3.—Theoretical and simulated mismatch distribu-
ers et al. 1996), we find that the estimated values oftions for Turkana’s mtDNA HV1 (Watson et al. 1996). The
the parameters and their confidence intervals are quitesimulated line was obtained as the mean mismatch distribution

obtained after 5000 simulations according to the estimated sensitive to departure from the infinite-sites model. For
parameters shown at the bottom of each graph. The estimated instance, the estimated values of the expansion time (t)
parameters were obtained for (a) two-rates model: of 370 sites, shown in Figure 2 for the Mandenka population are34 were considered mutating 11 times faster than the others;

found, respectively, 9 and 20% larger for HV1 and HV2and (b) finite sites (370 bp) m-rates model assuming a gamma
when using a model with gamma-distributed mutationdistribution of mutation rates (shape parameter a 5 0.26).

The 95% confidence intervals of each estimated parameter are rates than for the infinite-sites model. Even though our
shown within brackets and are obtained from the simulations. methodology appears computationally more intensive,

it thus seems justified to take into account the known
departures from the infinite sites model to estimate the

confidence intervals, the bootstrap percentile method parameters of the stepwise demographic model. The
requires that these two distributions be identical (see, present approach does not allow us to retrieve all the
e.g., Rice 1995, p. 271). We can see that it is only approxi- parameters of a demographic expansion with the same
mately the case for t but not for u0 or for u1 (data not efficiency. As shown in Tables 1 and 2, the expansion
shown for u1). Moreover, the estimations of t and u0 time (t) and the initial population size (u0) are the only
appear much less biased than that of u1. Note that a parameters that can be estimated without much bias
possible explanation of the bias for u1 is mentioned in and with reasonable precision, while the estimation of
Rogers and Harpending (1992), who rightly point out u1 is clearly biased upward. The confidence intervals
that it is difficult to distinguish between a large expan- obtained from the parametric bootstrap approach are
sion and a very large expansion, thus generating an fairly estimated only for the expansion time t, while
upward bias in u1. Interestingly, the parameters of old those for the population sizes are clearly too large and
expansions (t 5 9) seem more precisely recovered than thus overly conservative. This implies that the magni-
those of relatively recent expansions (t 5 3; (Tables 1 tude of the expansion cannot be precisely recovered by
and 2). These results confirm several points. First, the the present approach. This is understandable because
time of a sudden expansion (t) can be adequately recov- once the expansion is sufficiently large, very few coales-
ered from the data with approximately valid confidence cent events (if any) will have occurred between the
intervals. Second, the estimate of the initial population present time and the beginning of the expansion. As it

is the accumulation of those coalescent events that cansize appears quite well recovered, but with an overly
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TABLE 1

Proportion of noninclusion of the exact parameter value: two mutation rates model

Parameters of
the two-rates

Averagemutation modela Significance level
Demographic True estimated

m1 m2 r parameters values valueb 0.010 0.020 0.050 0.100

270 30 20 t 3 3.726 (1.195) 0.008 0.024 0.095 0.203
u0 1 0.812 (1.137) 0 0 0.004 0.061
u1 1000 3777 (7638) 0 0 0.002 0.015

290 10 50 t 3 3.854 (1.493) 0.010 0.023 0.089 0.189
u0 1 0.806 (1.051) 0 0 0.001 0.020
u1 1000 3246 (6664) 0 0 0.007 0.019

270 30 20 t 9 9.253 (1.037) 0.003 0.005 0.015 0.057
u0 1 0.822 (1.019) 0 0 0 0
u1 1000 4183 (8444) 0 0 0 0

290 10 50 t 9 9.286 (1.072) 0.004 0.009 0.023 0.056
u0 1 0.808 (1.019) 0 0 0 0
u1 1000 3986 (8917) 0 0 0 0.001

a m1 is the number of slow sites; m2 is the number of fast sites; r is the ratio of mutation rates between the
fast and the slow sites.

b Average value of the parameters estimated from 1000 coalescent simulations around the true values (standard
deviations shown in parentheses).

provide some information on the present population theoretical mismatch distribution. A set of demographic
parameters u0, u1, and t was declared compatible if thesize, there will often be too few of them to get a reliable

estimate of the present size, which will also tend to be goodness-of-fit statistic fell within a 95% confidence in-
terval obtained by simulation. While this approach seemsoverestimated. The present parametric bootstrap ap-

proach for defining the confidence intervals differs valid, it requires much heavier computations than ours
if one wants to adequately explore the space of possiblesomewhat from that described in previous studies (Rog-

ers 1995; Rogers et al. 1996). The previous approaches parameters, as a series of simulations needs to be carried
out for each set of parameters. Moreover, the potentialconsisted of finding a set of values of the demographic

parameter compatible with the observed data. The impact of the chosen goodness-of-fit statistic on the re-
sults and the reliability of the confidence intervals has“compatibility” criterion was a statistic of goodness-of-

fit (mean absolute error) between the observed and the not been addressed. The fact that the effective popula-

TABLE 2

Proportion of noninclusion of the exact parameter value: gamma distribution of mutation rates

Parameters of the
Averagemutation model Significance level

Demographic True estimated
m aa parameters values valueb 0.010 0.020 0.050 0.10

300 0.26 t 3 3.514 (0.920) 0.014 0.028 0.076 0.183
u0 1 1.017 (1.227) 0 0 0.001 0.033
u1 1000 5,525 (10,095) 0 0 0.001 0.002

300 0.13 t 3 3.457 (0.897) 0.007 0.019 0.069 0.146
u0 1 1.003 (1.265) 0 0 0.004 0.039
u1 1000 5,220 (9,873) 0 0 0 0

300 0.26 t 9 9.210 (1.073) 0.013 0.024 0.081 0.152
u0 1 1.210 (1.111) 0 0 0 0
u1 1000 4538 (9,253) 0 0 0 0

300 0.13 t 9 9.219 (1.146) 0.006 0.014 0.048 0.112
u0 1 1.195 (1.002) 0 0 0 0
u1 1000 4014 (8,300) 0 0 0 0

a Shape parameter of the gamma distribution.
b Average value of the parameters estimated from 1000 coalescent simulations around the true values (standard

deviations are shown in parentheses).
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to small changes in the mismatch distribution (see also
Rogers 1997). Conversely, small differences in the
shape of the observed mismatch distribution will pro-
foundly affect the values of the estimated parameters.
As the estimation of the expansion time t depends essen-
tially on the mean of the mismatch distribution (Rogers
and Harpending 1992), while the other parameters u0

and u1 depend on higher moments of the distribution,
those latter two parameters are more likely to be affected
by the stochasticity of the genealogical process than t.
This is in keeping with our simulations, which show that
the expansion time is usually quite well recovered from
the mismatch distribution (Tables 1 and 2).

Even though we have refined the mutation model
for mtDNA sequences, one can see that the theoretical
mismatch distributions do not always perfectly fit with
the observed distributions (Figures 2, 3, and 5). We can
see two reasons explaining this discrepancy.

First, the single stepwise expansion model may be
inadequate for some populations. Alternative popula-
tion expansion models such as exponential growth or
logistic growth could be more realistic that the stepwise
growth used in this study (Polanski et al. 1998), but as
long as the magnitude of the expansion is large and we
start from a small population, they should lead to results
very similar to those provided here (Rogers and Har-
pending 1992; Rogers 1997). It seems more likely that
demographic scenarios very different from population
growth may explain these discrepancies. Population
contractions may indeed have occurred in some popula-
tions and could explain the rejection of the sudden
expansion model. A population crash could have oc-
curred in the Ngoebe population from Panama, as well
as in other native Amerindian populations, where the
hypothesis of sudden expansion is not supported, as in
the Kuna from Panama (P 5 0.05, HV1), the Huetar
from Costa-Rica (P 5 0.026, HV2), or the MapucheFigure 4.—Verification of the validity of the parametric

bootstrap procedure. The distribution of the difference be- from Argentina (P 5 0.009, HV2). Additional evidence
tween the true value of the parameter (x) and its estimation for a recent population contraction comes from the
from the simulation (x̂) (1000 values) is compared to the observation of large positive values for Tajima’s D-statis-distribution of the difference between the simulated (x̂) and

tics (Tajima 1989) in those populations (results notbootstrapped parameter values (x*) (1,000,000 values). The
shown), which are expected in the case of a recenttwo statistics x 2 x̂ and x̂ 2 x* should be identically distributed

for parametric bootstrap to work. (Top) x 5 t 5 3, u0 5 1, population bottleneck (Tajima 1993). Note also that
u1 5 1000. (Bottom) x 5 u0 5 1, t 5 3, u1 5 1000. other factors like admixture events, population sub-

structure, or inbreeding could all affect the shape of
the mismatch distribution but to an extent that has not

tion sizes are not well recovered from the mismatch yet been quantified.
distribution would suggest that this previous approach Second, the probabilities derived in Equations 1 and
may suffer from the same problems as the simple para- 2 and their derivatives apply to a pair of genes chosen
metric bootstrap procedure and thus also lead to overly at random from the population, while they are applied
large confidence intervals. here to a random pair chosen from the sample. How-

A recent study has shown that time-dependent demo- ever, pairs drawn from the sample are not independent
graphic models (including the present stepwise expan- due to the shared portions of their gene genealogy. In
sion model) were unstable with respect to the estimation populations having gone through a recent and large
of the demographic parameters describing the popula- expansion, the internal branches are very short due to
tion sizes (Polanski et al. 1998), in the sense that large the star-like structure of the tree (Slatkin and Hudson

1991; Fu 1997), and a very few mutations will accumulatefluctuations in the demographic parameters lead only
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Figure 5.—Empirical 95%
“confidence intervals” for the
mismatch distribution in four
human populations analyzed
for mtDNA control region. In
all cases, a finite-sites mutation
model was used, assuming
gamma distribution of muta-
tion rates (a 5 0.26 for HV1
and a 5 0.13 for HV2). For the
Ngoebe sample (Kolman et al.
1995), the hypothesis of sud-
den expansion is rejected by
the SSD test (P 5 0.007). The
SSD P values for the other
samples are as follows: English
HV1 (Piercy et al. 1995), 0.764;
Mandenka HV2 (Graven et al.
1995), 0.0652; !Kung HV1
(Vigilant et al. 1991), 0.1368.

on those branches. In that case, the correlation between after having introduced a more realistic mutation
model, we still find that the observed number of segre-the number of pairwise differences (dij) will only be due

to shared external branches (i.e., d12 and d13 will be gating sites is not always in agreement with the distribu-
tion obtained from simulations based on the estimatedcorrelated due to the shared lineage leading to se-

quence 1, but d12 and d34 should be almost independent), demographic parameters. For instance, considering the
mismatch distributions shown in Figure 5, even if we getand our derivations should better hold at the sample

level. On the other hand, for stationary populations or a perfect fit for the English HV1 sample, the estimated
parameters lead on average to far fewer segregating sitesrelatively small or remote expansions, some coalescent

events will occur before and after the expansion. The than observed, although not significantly so (Sobs 5 67;
Smean 5 60.6; SD(S) 5 6.2; P 5 0.872). Interestingly, theinternal branches will be longer and have a large associ-

ated variance. Those equations, while still being correct Mandenka sample presents a significant lack of segregat-
ing sites for HV2 as compared to the estimated expan-for a single pair of genes, will thus not allow us to get

the sample distribution of pairwise differences as they sion conditions (Sobs 5 27; Smean 5 38.0; SD(S) 5 5.0;
P 5 0.014). This discrepancy could be explained by ado not take into account the covariance of pairwise

differences. Therefore, the present method is not ex- very large heterogeneity of mutation rates in HV2 for
this population, but it seems difficult to understand howpected to recover the parameters of a demographic

expansion efficiently unless the expansion has been very and why the structural and functional constraints that
are supposed to shape the heterogeneity of mutationlarge.

Although mismatch distributions carry some informa- rates (Wakeley 1993, p. 614) could differ between pop-
ulations. Additional studies on that matter would never-tion on the shape of the underlying gene genealogy

and coalescent process, other aspects of molecular diver- theless be needed to exclude this possibility.
To get absolute values for the demographic parame-sity are not explicitly taken into account by this ap-

proach. It has been shown that demographic parameters ters inferred using the present approach, one should
get an estimation of the substitution rate at the nucleo-recovered from the mismatch distribution did not allow

the correct prediction of the number of observed poly- tide level. The real value of mutation rate in humans has
recently been the subject of an intense debate betweenmorphic sites (Bertorelle and Slatkin 1995) or of

the distribution of mutation frequencies (Wakeley and those advocating the use of a phylogenetic mutation
rate (z3 3 1026 substitutions per site per generationHey 1997) for human mtDNA. This could either be

due to departure from the infinite-sites mutation model of 20 yr) calibrated by the divergence between humans
and chimpanzees (Jazin et al. 1998) and those studyingor from the proposed simple demographic model. Even
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human mtDNA control region sequences. Nucleic Acids Res. 26:the mutation process directly on pedigrees giving num-
126–129.

bers z10 times larger (z2.7 3 1025 substitutions per Harpending, H. C., M. A. Batzer, M. Gurven, L. B. Jorde, A. R.
Rogers et al., 1998 Genetic traces of ancient demography. Proc.site per generation; Howell et al. 1996; Parsons et al.
Natl. Acad. Sci. USA 95: 1961–1967.1997; Parsons and Holland 1998). For the present

Hasegawa, M., A. DiRienzo, T. D. Kocher and A. C. Wilson, 1993
methodology to be fully beneficial, it thus seems highly Toward a more accurate time scale for the human mitochondrial

DNA tree. J. Mol. Evol. 37: 347–354.necessary to get reliable estimates of mutation rates.
Hooke, R., and T. A. Jeeves, 1963 “Direct search” solution of numer-Otherwise, the importance of taking into account more

ical and statistical problem. J. Assoc. Comput. Machinery 8: 212–
realistic mutation models would seem rather futile. 229.

Howell, N., I. Kubacha and D. A. Mackey, 1996 How rapidly doesEven if the present approach is an improvement over
the human mitochondrial genome evolve? Am. J. Hum. Genet.previous methods, it seems that the use of the mismatch
59: 501–509.

distribution as a summary statistic may not exploit the Hudson, R. R., 1990 Gene genealogies and the coalescent process,
pp. 1–44 in Oxford Surveys in Evolutionary Biology, edited by D. J.full potential of molecular data and that maximum-
Futuyma and J. D. Antonovics. Oxford University Press, Newlikelihood methods that take into account phylogenetic
York.

relationships between DNA sequences (e.g., Griffiths Jazin, E., H. Soodyall, P. Jalonen, E. Lindholm, M. Stoneking et
al., 1998 Mitochondrial mutation rate revisited: hot spots andand Tavaré 1994; Kuhner et al. 1995; Tavaré et al.
polymorphism. Nat. Genet. 18: 109–110.1997; Kuhner et al. 1998; Weiss and von Haeseler

Kimura, M., 1969 The number of heterozygous nucleotide sites
1998) would be needed to get more reliable estimates maintained in a finite population due to the steady flux of muta-

tions. Genetics 61: 893–903.of demographic parameters. However, considering the
Kimura, M., 1980 A simple method for estimating evolutionary ratefact that these methods are extremely computer-inten-

of base substitution through comparative studies of nucleotide
sive when heterogeneity of mutation rates is considered, sequences. J. Mol. Evol. 16: 111–120.

Kingman, J. F. C., 1982 The coalescent. Stochastic Process. Appl.the present approach may still be useful in most practi-
13: 235–248.cal purposes.

Kocher, T. D., and A. C. Wilson, 1991 Sequence evolution of mito-
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